
GDL Reference Guide

GRAHISOFT®

Visit the GRAPHISOFT website at http://www.graphisoft.com for local distributor and product availability information.
GDL Reference Guide
Copyright © 2010 by GRAPHISOFT, all rights reserved. Reproduction, paraphrasing or translation without express prior written permission is
strictly prohibited.
Trademarks
ArchiCAD® is a registered trademark of GRAPHISOFT. All other trademarks are the property of their respective holders.

http://www.graphisoft.com

GDL Reference Guide 3

Introduction
This manual is a complete reference for GRAPHISOFT’s proprietary scripting language, GDL (Geometric Description Language). The manual is recommended for
those users who wish to expand on the possibilities presented by the construction tools and object libraries available in GRAPHISOFT software. It gives a detailed
description of GDL, including syntax definition, commands, variables, etc.

4 GDL Reference Guide

GDL Reference Guide 5

CONTENTS
General Overview ____________________________________12
Starting Out . 12
Scripting . 12
Library Part Structure. 12
Analyze, Deconstruct and Simplify . 13
Elaboration . 14
Entry Level . 14
Intermediate Level . 16
Advanced Level . 18
Expert Level . 20
3D Generation .20
The 3D Space . 20
Coordinate Transformations . 21
The GDL Interpreter . 21
The GDL Script Analysis. 21
GDL Syntax __ 23
Statements .23
Line .23
Label .23
Characters .23
Strings .24
Identifiers .24
Variables .24
Parameters .25
Simple Types .25
Derived Types .25

Coordinate Transformations __________________________ 27
2D Transformations .27
3D Transformations .28
Managing the Transformation Stack . 31

3D Shapes ___ 33
Basic Shapes .33
BLOCK. 33
BRICK . 33
CYLIND. 34

SPHERE. 34
ELLIPS . 35
CONE. 36
PRISM. 37
PRISM_. 38
CPRISM_ . 41
CPRISM_{2} . 42
BPRISM_ . 42
FPRISM_ . 45
HPRISM_ . 47
SPRISM_. 48
SPRISM_{2} . 49
SLAB. 52
SLAB_. 52
CSLAB_ . 53
CWALL_. 53
BWALL_. 56
XWALL_. 59
XWALL_{2} . 62
BEAM. 65
CROOF_ . 65
CROOF_{2} . 69
MESH . 69
ARMC . 72
ARME. 73
ELBOW . 75
Planar Shapes in 3D. 76
HOTSPOT . 76
LIN_ . 76
RECT . 76
POLY . 77
POLY_ . 77
PLANE . 77
PLANE_. 78
CIRCLE . 78
ARC. 79

Contents

6 GDL Reference Guide

Shapes Generated from Polylines. 79
EXTRUDE . 81
PYRAMID. 85
REVOLVE . 87
RULED . 91
RULED{2} . 92
SWEEP . 95
TUBE. 99
TUBEA . 104
COONS . 106
MASS . 109
Elements for Visualization .112
LIGHT. 112
PICTURE . 116
3D Text Elements .117
TEXT . 117
RICHTEXT. 118
Primitive Elements .118
VERT . 119
TEVE. 119
VECT . 119
EDGE . 120
PGON . 120
PIPG . 121
COOR . 121
BODY . 124
BASE . 126
Cutting in 3D. 126
CUTPLANE . 126
CUTPOLY. 129
CUTPOLYA . 134
CUTSHAPE . 136
CUTFORM . 137
Solid Geometry Commands . 138
GROUP . 142
ENDGROUP . 142
ADDGROUP . 142
SUBGROUP . 142
ISECTGROUP . 142

ISECTLINES .142
PLACEGROUP .143
KILLGROUP .143
SWEEPGROUP .145
Binary 3D .145

2D Shapes___ 147
Drawing Elements .147
HOTSPOT2 .147
LINE2 .148
RECT2 .148
POLY2 .149
POLY2_ .150
POLY2_A .151
POLY2_B .151
POLY2_B{2} .151
POLY2_B{3} .152
POLY2_B{4} .152
POLY2_B{5} .152
ARC2 .154
CIRCLE2 .154
SPLINE2 .155
SPLINE2A. .157
PICTURE2 .158
PICTURE2{2} .158
Text Element .159
TEXT2. .159
RICHTEXT2. .159
Binary 2D .160
FRAGMENT2. .160
FRAGMENT2. .160
3D Projections in 2D. .160
PROJECT2 .160
PROJECT2{2} .161
PROJECT2{3} .163
Drawings in the List .164
DRAWING2 .164
DRAWING3 .164
DRAWING3{2} .164
DRAWING3{3} .164

Contents

GDL Reference Guide 7

Graphical Editing___________________________________ 167
Hotspot-based Editing Commands . 167
HOTSPOT .167
HOTLINE2 .172
HOTARC2 .172
HOTLINE .172
HOTARC .172

Status Codes _______________________________________ 173
Status Code Syntax . 173
Additional Status Codes . 175
Previous part of the polyline: current position and
tangent is defined .175
Segment by absolute endpoint .175
Segment by relative endpoint .176
Segment by length and direction .176
Tangential segment by length .177
Set start point .177
Close polyline .178
Set tangent .178
Set centerpoint. .179
Tangential arc to endpoint .179
Tangential arc by radius and angle .180
Arc using centerpoint and point on the final radius180
Arc using centerpoint and angle .181
Full circle using centerpoint and radius .181

Attributes ___ 187
Directives. 187
Directives for 3D and 2D Scripts .187

[LET] .187
RADIUS .188
RESOL. .189
TOLER .190
PEN .190
LINE_PROPERTY. .191
[SET] STYLE .191
SET STYLE 0 .191

Directives Used in 3D Scripts Only .191
MODEL. .191

[SET] MATERIAL. .192
SECT_FILL .193
SHADOW .194

Directives Used in 2D Scripts Only .195
DRAWINDEX .195
[SET] FILL .195
[SET] LINE_TYPE .196

Inline Attribute Definition .196
Materials. .196

DEFINE MATERIAL. .196
DEFINE MATERIAL BASED_ON .199
DEFINE TEXTURE .200

Fills. .202
DEFINE FILL .202
DEFINE FILLA .205
DEFINE SYMBOL_FILL .207
DEFINE SOLID_FILL .208
DEFINE EMPTY_FILL .208
DEFINE LINEAR_GRADIENT_FILL.209
DEFINE RADIAL_GRADIENT_FILL.209
DEFINE TRANSLUCENT_FILL .209
DEFINE IMAGE_FILL .209

Line Types .210
DEFINE LINE_TYPE .210
DEFINE SYMBOL_LINE .210

Styles .211
DEFINE STYLE .211
DEFINE STYLE {2}. .212

Paragraph. .212
Textblock .213
Additional Data .214

External file dependence .215
Non-Geometric Scripts ______________________________ 217
The Properties Script .217
DATABASE_SET. .217
DESCRIPTOR .218
REF DESCRIPTOR. .218
COMPONENT .218
REF COMPONENT .219

Contents

8 GDL Reference Guide

BINARYPROP . 219
SURFACE3D () . 219
VOLUME3D () . 219
POSITION . 219
DRAWING . 220
The Parameter Script . 220
VALUES . 221
PARAMETERS . 222
LOCK . 223
HIDEPARAMETER . 223
The User Interface Script . 223
UI_DIALOG. 223
UI_PAGE. 223
UI_CURRENT_PAGE. 224
UI_BUTTON . 224
UI_SEPARATOR . 225
UI_GROUPBOX . 225
UI_PICT . 226
UI_STYLE. 226
UI_OUTFIELD . 227
UI_INFIELD . 227
UI_INFIELD{2} . 227
UI_INFIELD{3} . 228
UI_RADIOBUTTON . 233
UI_TOOLTIP . 234
Expressions and Functions ___________________________ 235
Expressions . 235
DIM . 235
VARDIM1(expr) . 236
VARDIM2(expr) . 236
Operators . 238
Arithmetical Operators . 238
Relational Operators . 238
Boolean Operators. 238
Functions. 239
Arithmetical Functions . 239

ABS. 239
CEIL. 239
INT . 239

FRA .239
ROUND_INT .239
SGN .239
SQR. .239

Circular Functions .240
ACS .240
ASN .240
ATN .240
COS. .240
SIN .240
TAN .240
PI. .240

Transcendental Functions .240
EXP .240
LGT .240
LOG .241

Boolean Functions. .241
NOT .241

Statistical Functions. .241
MIN .241
MAX .241
RND .241

Bit functions. .241
BITTEST .241
BITSET. .241

Special Functions. .242
String Functions. .242

STR .242
STR .242
STR{2} .242
SPLIT .245
STW .247
STRLEN .247
STRSTR .247
STRSUB .248

Control Statements _________________________________ 249
Flow Control Statements . 249
FOR .249
NEXT .249

Contents

GDL Reference Guide 9

DO .250
IF .252
GOTO .253
GOSUB .253
RETURN. .253
END / EXIT .254
Parameter Buffer Manipulation . 254
Macro Objects . 258
The Output Statement . 260
File Operations . 260
OPEN .260
INPUT. .261
VARTYPE .261
OUTPUT. .261
CLOSE .261
USING DETERMINISTIC ADD-ONS 261
INITADDONSCOPE .262
PREPAREFUNCTION .262
CALLFUNCTION .262
CLOSEADDONSCOPE. .262

Miscellaneous______________________________________ 263
Global Variables . 263
General environment information .263
Story information .264
Fly-through information .264
General element parameters .265
Object, Lamp, Door, Window parameters.265
Object, Lamp parameters .266
Object, Lamp, Door, Window parameters, Curtain Wall
Accessory - available for listing and labels only266
Object, Lamp, Curtain Wall Accessory parameters - available for listing
and labels only .266
Window, Door and Wall End parameters .267
Window, Door parameters - available for listing and labels only . .268
Lamp parameters - available for listing and labels only268
Label parameters .269
Wall parameters - available for Doors/Windows.270
Wall parameters - available for listing and labels only271

Column parameters - available for listing and labels only273
Beam parameters - available for listing and labels only275
Slab parameters - available for listing and labels only276
Roof parameters - available for listing and labels only 278
Fill parameters - available for listing and labels only279
Mesh parameters - available for listing and labels only279
Curtain Wall parameters - available for listing and labels only280
Curtain Wall Frame parameters - available for listing and
labels only .282
Curtain Wall Panel parameters - available for listing and
labels only .283
Curtain Wall Junction parameters - available for listing and
labels only .283
Curtain Wall Accessory parameters - available for listing and
labels only .283
Free users’ globals .284
Old Global Variables. .286
Requests . 288
REQ. .288
REQUEST .289
APPLICATION_QUERY .300
LIBRARYGLOBAL .300
Doors and Windows . 302
General Guidelines .302
Creation of Door/Window Library Parts .303

Rectangular Doors/Windows in Straight Walls 303
3D Related Challanges. .305
2D Related Challanges. .313

GDL Created from the Floor Plan .316
Keywords .317
Common Keywords .317
Reserved Keywords. .318
3D Use Only .319
2D Use Only .321
2D and 3D Use .322
Non-Geometric Scripts. .322

Property Script. .322
Parameter Script .323
Interface Script. .323

Contents

10 GDL Reference Guide

Alphabetical List of Current GDL Keywords 324
A . 324
B . 324
C . 325
D . 329
E . 331
F . 331
G . 332
H . 332
I . 332
K . 333
L . 333
M. 333
N . 334
O . 334
P . 335
R . 337
S . 339
T . 340
U . 341
V. 343
W. 343
X . 345

Parameter Naming Convention . 346
GDL Data I/O Add-On . 346
Description of Database . 346
Opening a Database . 346
Reading Values from Database . 348
Writing Values into Database . 349
Closing Database . 349
GDL DateTime Add-On. 350

Opening Channel. .350
Reading Information .352
Closing Channel. .352
GDL File Manager I/O Add-On . 352
Specifying Folder .352
Getting File/Folder Name .353
Finishing Folder Scanning. .353
GDL Text I/O Add-On . 354
Opening File .354
Reading Values. .355
Writing Values .356
Closing File .357
Property GDL Add-On . 358
OPEN .358
CLOSE. .358
INPUT .359
OUTPUT. .361
GDL XML Extension .361
Opening XML Document. .363
Reading XML Document .363
Modifying XML Document .367
Polygon Operations Extension . 370
Opening a channel. .370
Polygon container management .370
Polygon management .371
Polygon operation settings .372
Polygon operations .372
Get resulting polygons .374
Closing channel .374

Index___ 375

GDL Reference Guide 11

GDL Reference Guide
Introduction
This manual is a complete reference for GRAPHISOFT’s proprietary scripting language, GDL (Geometric Description Language). The manual is recommended for
those users who wish to expand on the possibilities presented by the construction tools and object libraries available in GRAPHISOFT software. It gives a detailed
description of GDL, including syntax definition, commands, variables, etc.

General Overview

12 GDL Reference Guide

GENERAL OVERVIEW
GDL is a parametric programming language, similar to BASIC. It describes 3D solid objects like doors, windows, furniture, structural
elements, stairs, and the 2D symbols representing them on the floor plan. These objects are called library parts.

STARTING OUT

The needs of your design, your background in programming and your knowledge of descriptive geometry will all probably influence where you
start in GDL.
Do not start practicing GDL with complicated objectives in mind. Rather, try to learn GDL through experimenting step by step with all of its
features to best utilize them to your advantage. Follow the expertise level recommendations below.
If you are familiar with a programming language like BASIC, you can get acquainted with GDL by observing existing scripts. You can also learn
a lot by opening the library parts shipped with your software and taking a look at the 2D and 3D GDL scripts. Additionally, you can save floor
plan elements in GDL format and see the resulting script.
If you are not familiar with BASIC, but have played with construction blocks, you can still find your way in GDL through practice. We advise
trying the simplest commands right away and then checking their effect in the 3D window of the library part.
For details about the library part editing environment, see “Parametric Objects” in the Virtual Building chapter of ArchiCAD Help.
GRAPHISOFT has published several books on GDL programming and object library development. Object Making With ArchiCAD is the
perfect guide for beginners. David Nicholson Cole’s GDL Cookbook is the most popular course book for entry level and advanced GDL
programmers. GDL Technical Standards contains GRAPHISOFT’s official standards for professional library developers; this document can be
downloaded free of charge from GRAPHISOFT’s website.

SCRIPTING

Library Part Structure
Every library part described with GDL has scripts, which are lists of the actual GDL commands that construct the 3D shape and the 2D
symbol. Library parts also have a description for quantity calculations in ArchiCAD.
Master script commands will be executed before each script.
The 2D script contains parametric 2D drawing description. The binary 2D data of the library part (content of the 2D symbol window) can be
referenced using the FRAGMENT2 command. If the 2D script is empty, the binary 2D data will be used to display the library part on the floor
plan.
The 3D script contains a parametric 3D model description. The binary 3D data (which is generated during an import or export operation) can
be referenced using the BINARY command.

General Overview

GDL Reference Guide 13

The properties script contains components and descriptors used in element, component and zone lists. The binary properties data described
in the components and descriptors section of the library part can be referenced using the BINARYPROP command. If the properties script
and the master script are empty, the binary properties data will be used during the list process.
The User Interface script allows the user to define input pages that can be used to edit the parameter values in place of the normal parameter
list.
In the parameter script, sets of possible values can be defined for the library part parameters.
The parameter set in the parameters section are used as defaults in the library part settings when placing the library part on the plan.
The preview picture is displayed in the library part settings dialog box when browsing the active library. It can be referenced by the PICTURE
and PICTURE2 commands from the 3D and 2D script.
Textual information related to the library part is stored in the comment section.
ArchiCAD and ArchiFM provide a helpful environment to write GDL scripts, with on-the-fly visualization, syntax and error checking.

Analyze, Deconstruct and Simplify
No matter how complex, most objects you wish to create can be broken down into “building blocks” of simple geometric shapes. Always start
with a simple analysis of the desired object and define all the geometric units that compose it. These building blocks can then be translated into
the vocabulary of the GDL scripting language. If your analysis was accurate, the combination of these entities will form the desired object.
To make the analysis, you need to have a good perception of space and at least a basic knowledge of descriptive geometry.

Window representations with different levels of sophistication
To avoid getting discouraged early on in the learning process, start with objects of defined dimensions and take them to their simplest but still
recognizable form. As you become familiar with basic modeling, you can increase the level of sophistication and get closer to the ideal form.
“Ideal” does not necessarily mean “complicated.” Depending on the nature of the architectural project, the ideal library part could vary from
basic to refined. The window on the left in the above illustration fits the style of a design visualization perfectly. The window on the right gives a
touch of realism and detail which can be used later in the construction documents phase of the project.

General Overview

14 GDL Reference Guide

Elaboration

Depending on your purpose, your custom parametric objects may vary in elaboration. Custom objects for internal studio use may be less refined
than the ones for general use or for commercial distribution.
If your symbols have little significance on the floor plan, or if parametric changes do not need to appear in 2D, then you can omit parametric 2D
scripts.
Even if parametric changes are intended to be present in 2D, it is not absolutely necessary to write a parametric 2D script. You can perform
parametric modifications in the 3D Script window or use the 3D top view of the modified object as a new symbol and save the modified object
under a new name. Parametric changes to the default values will result in several similar objects derived from the original.
The most complex and sophisticated library parts consist of parametric 3D descriptions with corresponding parametric 2D scripts. Any changes
in the settings will affect not only the 3D image of the object, but also its floor plan appearance.

Entry Level
These commands are easy to understand and use. They require no programming knowledge, yet you can create very effective new objects using
only these commands.

Simple Shapes
Shapes are basic geometric units that add up to a complex library part. They are the construction blocks of GDL. You place a shape in the 3D
space by writing a command in the GDL script.
A shape command consists of a keyword that defines the shape type and some numeric values or alphabetic parameters that define its
dimensions.
The number of values varies by shape.
In the beginning, you can omit using parameters and work with fixed values only.
You can start with the following shape commands:

In 3D:
BLOCK CYLIND SPHERE PRISM

General Overview

GDL Reference Guide 15

In 2D:
LINE2 RECT2 POLY2 CIRCLE2 ARC2

Coordinate Transformations
Coordinate transformations are like moving your hand to a certain place before placing a construction block. They prepare the position,
orientation and scale of the next shape.

BLOCK 1, 0.5, 0.5
ADDX 1.5
ROTY 30
BLOCK 1, 0.5, 0.5
The 3D window of the library part will optionally show you the home (G = global) and the current (L = local) position of the coordinate axis
triad for any object present.
The simplest coordinate transformations are as follows:

In 3D:
ADDX ADDY ADDZ
ROTX ROTY ROTZ

In 2D:
ADD2 ROT2
The commands starting with ADD will move the next shape, while the ROT commands will turn it around any of its axes.

L
G

Z

Z

X

Y

X

Y

General Overview

16 GDL Reference Guide

Intermediate Level
These commands are a bit more complex, not because they expect you to know programming, but simply because they describe more complex
shapes or more abstract transformations.

In 3D:
ELLIPS CONE
POLY_ LIN_ PLANE PLANE_
PRISM_ CPRISM_ SLAB SLAB_ CSLAB_
TEXT
In 2D:
HOTSPOT2 POLY2_ TEXT2 FRAGMENT2
These commands usually require more values to be defined than the simple ones. Some of them require status values to control the visibility of
edges and surfaces.

General Overview

GDL Reference Guide 17

Coordinate Transformations

In 3D:
MULX MULY MULZ
ADD MUL ROT

In 2D:

MUL2
PRISM 4, 1, 3, 0,

3, 3, -3, 3,
-3, 0

ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,

3, 3, -3, 3,
-3, 0

ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,

3, 3, -3, 3,
-3, 0

The transformations starting with MUL will rescale the subsequent shapes by distorting circles into ellipses or spheres into ellipsoids. If used
with negative values, they can be used for mirroring. The commands in the second row affect all three dimensions of space at the same time.

General Overview

18 GDL Reference Guide

Advanced Level
These commands add a new level of complexity either because of their geometric shape, or because they represent GDL as a programming
language.

In 3D:
BPRISM_ BWALL_ CWALL_ XWALL_
CROOF_ FPRISM_ SPRISM_
EXTRUDE PYRAMID REVOLVE RULED
SWEEP TUBE TUBEA COONS
MESH MASS
LIGHT PICTURE
There are shape commands in this group which let you trace a spatial polygon with a base polygon to make smooth curved surfaces. Some
shapes require material references in their parameter list.
By using cutting planes, polygons and shapes, you can generate complex arbitrary shapes out of simple shapes. The corresponding commands
are CUTPLANE, CUTPOLY, CUTPOLYA, CUTSHAPE and CUTEND.

In 2D:
PICTURE2 POLY2_A
SPLINE2 SPLINE2_A

General Overview

GDL Reference Guide 19

Flow Control and Conditional Statements
FOR NEXT
DO WHILE ENDWHILE
REPEAT UNTIL
IF THEN ELSE ENDIF GOTO GOSUB
RETURN END EXIT
These commands should be familiar to anyone who has ever programmed a computer, but they are basic enought that you can understand them
without prior programming experience.
They let you make repetitive script parts to place several shapes with little scripting, or let you make decisions based on prior calculations.

FOR I = 1 TO 5
PRISM_ 8, 0.05,

-0.5, 0, 15,
-0.5, -0.15, 15,
0.5, -0.15, 15,
0.5, 0, 15,
0.45, 0, 15,
0.45, -0.1, 15,
-.45, -0.1, 15,
-0.45, 0, 15

ADDZ 0.2
NEXT I

Parameters
At this stage of your expertise, you can replace fixed numeric values with variable names. This makes the object more flexible. These variables
are accessible from the library part’s Settings dialog box while working on the project.

General Overview

20 GDL Reference Guide

Macro Calls
You are not limited to the standard GDL shapes. Any existing library part may become a GDL shape in its entirety. To place it, you simply “call”
(refer to) its name and transfer the required parameters to it, just as with standard shape commands.

Expert Level
By the time you have a good understanding of the features and commands outlined above, you will be able to pick up the few remaining
commands that you may need from time to time.

Note: The memory capacity of your computer may limit the file length of your GDL scripts, the depth of macro calls and the number of
transformations.

You will find additional information on the above GDL commands throughout the manual. HTML format help files are also available with your
software, giving a quick overview of the available commands and their parameter structure.

3D GENERATION

3D modeling is based on floating point arithmetics, meaning that there is no limit imposed on the geometric size of the model. Whatever size it
is, it retains the same accuracy down to the smallest details.
The 3D model that you finally see on the screen is composed of geometric primitives. These primitives are stored in the memory of your
computer in binary format, and the 3D engine generates them according to the floor plan you created. The metamorphosis between the
architectural floor plan elements and the binary 3D data is called 3D conversion.
The primitives are the following:
• all the vertices of your building components
• all the edges linking the vertices
• all the surface polygons within the edges

Groups of these primitives are kept together as bodies. The bodies make up the 3D model. All of the features of 3D visualization - smooth
surfaces, cast shadows, glossy or transparent materials - are based on this data structure.

The 3D Space
The 3D model is created in three-dimensional space measured by the x, y and z axes of a master coordinate system whose origin is called the
global origin.
In Floor Plan view, you can see the global origin in the lower left corner of the worksheet if you open the program without reading a specific
document. In addition, the global origin defines the zero level of all the stories referred to in a floor plan document.
When you place an object into the design, the floor plan position will define its location along the x and y axes of this master coordinate system.
The location along the z axis can be set in the Object Settings dialog box or directly adjusted when placed in 3D. This location will be the base
and the default position of the local coordinate system of the object. The shapes described in the script will be positioned with reference to
this local coordinate system.

General Overview

GDL Reference Guide 21

Coordinate Transformations
Every GDL shape is linked to the current position of the local coordinate system. For example, BLOCKs are linked to the origin. The length,
width and height of the block are always measured in a positive direction along the three axes. Thus, the BLOCK command requires only three
parameters defining its dimensions along the axes.
How can you generate a shifted and rotated block? With the parameter structure of the BLOCK there is no way to do this. It does not have
parameters for shift and rotation.
The answer is to move the coordinate system to the correct position before issuing the BLOCK command. With the coordinate transformation
commands, you can pre-define its position and rotation around the axes. These transformations are not applied to the shapes already generated
and are only effective on subsequent shapes.

The GDL Interpreter
When a GDL script is executed, the GDL interpreter engine will detect the location, size, rotation angle, user defined parameters and the
mirrored state of the library part. It will then move the local coordinate system to the right position, ready to receive the GDL commands from
the script of the library parts. Every time a command for a basic shape is read by the interpreter, it will generate the geometric primitives that
make up that particular shape.
When the interpreter has finished, the complete binary 3D model will be stored in the memory, and you can perform 3D projections,
fly-through renderings or sun studies on it.
ArchiCAD and ArchiFM contain a pre-compiler and an interpreter for GDL. Interpretation of a GDL script uses the pre-compiled code. This
feature increases speed of the analysis. If the GDL script is modified, a new code is generated.
Data structures converted from other file formats (e.g., DXF, Zoom, Alias Wavefront) are stored in a binary 3D section of the library parts. This
section is referenced by the BINARY statement from the GDL script.

The GDL Script Analysis
Users have no control over the order in which library parts placed on the floor plan are analyzed. The order of GDL script analysis is based on
the internal data structure; moreover, Undo and Redo operations as well as modifications may influence that order. The only exceptions to this
rule are special GDL scripts of the active library, whose names begin with “MASTER_GDL” or “MASTEREND_GDL”.
Scripts whose name begins with “MASTER_GDL” are executed before a 3D conversion, before creating a Section/Elevation, before starting a
list process and after loading the active library.
Scripts whose name begins with “MASTEREND_GDL” are executed after a 3D conversion sequence, after creating a Section/Elevation, when
finishing a list process and when the active library is to be changed (Load Libraries, Open a project, New project, Quit).
These scripts are not executed when you edit library parts. If your library contains one or more such scripts they will all be executed in an order
that is not defined.
MASTER_GDL and MASTEREND_GDL scripts can include attribute definitions, initializations of GDL user global variables, 3D commands
(effective only in the 3D model), value list definitions (see the “VALUES” on page 221) and GDL extension-specific commands. The attributes
defined in these scripts will be merged into the current attribute set (attributes with same names are not replaced, while attributes originated
from GDL and not edited in the program are always replaced).

General Overview

22 GDL Reference Guide

GDL Reference Guide 23

GDL SYNTAX
This chapter presents the basic elements of GDL syntax, including statements, labels, identifiers, variables and parameters. Typographic rules are also explained in detail.

Rules of GDL Syntax
GDL is not case sensitive; uppercase and lowercase letters are not distinguished, except in strings placed between quotation marks. The logical
end of a GDL script is denoted by an END or EXIT statement or the physical end of the script.

STATEMENTS

A GDL program consists of statements. A statement can start with a keyword (defining a GDL shape, coordinate transformations or program
control flow), with a macro name, or with a variable name followed by an ‘=’ sign and an expression.

LINE

The statements are in lines separated by line-separators (end_of_line characters).
A comma (,) in the last position indicates that the statement continues on the next line. A colon (:) is used for separating GDL statements in a
line. After an exclamation mark (!) you can write any comment in the line. Blank lines can be inserted into a GDL script with no effect at all. Any
number of spaces or tabs can be used between the operands and operators. The use of a space or tab is obligatory after statement keywords and
macro calls.

LABEL

Any line can start with a label which is used as a reference for a subsequent statement . A label is an integer number or a constant string between
quotation marks, followed by a colon (:). A string label is case sensitive. Labels are checked for single occurrence. The execution of the program
can be continued from any label by using a GOTO or GOSUB statement.

CHARACTERS

The GDL text is composed of the lower and uppercase letters of the English alphabet, any number and the following characters:
<space> _(underline) ~ ! : , ; . + – * / ^ = < > <= >= # () []{ } \ @ & |(vertical bar) " '
` ´ “ ” ' ‘ <end_of_line>

GDL Syntax

24 GDL Reference Guide

STRINGS

Any string of Unicode characters that is placed between quotation marks (“, ’, `, ´), or any string of characters without quotation marks that does
not figure in the script as an identifier with a given value (macro call, attribute name, file name). Strings without quotation marks will be
converted to all caps, so using quotation marks is recommended. The maximum length allowed in a string is 255 characters. The ArchiCAD user
interface - unlike the GDL Engine - isn‘t fully Unicode ready yet, so in the Library Part Editor you can enter the caharacters of your current
system codepage only.
The ‘\’ character has special control values. Its meaning depends on the next character.
\\ ‘\’ char itself
\n new line
\t tabulator
\new line continue string in next line without a new line
\others not correct, results in warning
Examples:
“This is a string”
”washbasin 1'-6"*1'-2”
'Do not use different delimiters'

IDENTIFIERS

Identifiers are special character strings:
• they are not longer than 255 characters;
• they begin with a letter of the alphabet or a ‘_’ or ‘~’ character;
• they consist of letters, numbers and ‘_’ or ‘~’ characters;
• upper- and lowercase letters are considered identical.

Identifiers can be GDL keywords, global or local variables or strings (names). Keywords and global variable names are determined by the
program you’re using GDL in; all other identifiers can be used as variable names.

VARIABLES

GDL programs can handle numeric and string variables (defined by their identifiers), numbers and character strings.
There are two sets of variables: local and global.
All identifiers that are not keywords, global variables, attribute names, macro names or file names are considered local variables. If left
uninitialized (undefined), their value will be 0 (integer). Local variables are stacked with macro calls. When returning from a macro call, the
interpreter restores their values.

GDL Syntax

GDL Reference Guide 25

Global variables have reserved names (the list of global variables available is given in the “Miscellaneous” on page 263). They are not stacked during
macro calls, enabling the user to store special values of the modeling and to simulate return codes from macros. The user global variables can be
set in any script but they will only be effective in subsequent scripts. If you want to make sure that the desired script is analyzed first, set these
variables in the MASTER_GDL library part. The other global variables can be used in your scripts to communicate with the program.
By using the “=” command, you can assign a numeric or string value to local and global variables.

PARAMETERS

Identifiers listed in a library part’s parameter list are called parameters. Parameter identifiers must not exceed 32 characters. Within a script, the
same rules apply to parameters as to local variables.
Parameters of text-only GDL files are identified by letters A to Z.

SIMPLE TYPES

Variables, parameters and expressions can be of two simple types: numeric or string.
Numeric expressions are constant numbers, numeric variables or parameters, functions that return numeric values, and any combination of these in
operations. Numeric expressions can be integer or real. Integer expressions are integer constants, variables or parameters, functions that return
integer values, and any combination of these in operations which results in integers. Real expressions are real constants, variables or parameters,
functions that return real values, and any combination of these (or integer expressions) in operations which results in reals. A numeric
expression being an integer or a real is determined during the compilation process and depends only on the constants, variables, parameters and
the operations used to combine them. Real and integer expressions can be used the same way at any place where a numeric expression is
required, however, in cases where a combination of these may result in precision problems, a compiler warning appears (comparison of reals or
reals and integers using relational operators '=' or '<>', or boolean operators AND, OR, EXOR; IF or GOTO statements with real label
expressions).
String expressions are constant strings, string variables or parameters, functions that return strings, and any combination of these in operations
which result in strings.

DERIVED TYPES

Variables and parameters can also be arrays, and parameters can be value lists of a simple type.
Arrays are one- or two-dimensional tables of numeric and/or string values, which can be accessed directly by indexes.
Value lists are sets of possible numeric or string values. They can be assigned to the parameters in the value list script of the library part or in the
MASTER_GDL script, and will appear in the parameter list as a pop-up menu.

[aaa]
Square brackets mean that the enclosed elements are optional (if they are bold, they must be entered as shown).

GDL Syntax

26 GDL Reference Guide

{n}
command version number

...
Previous element may be repeated

variable
Any GDL variable name

prompt
Any character string (must not contain quote character)

BOLD_STRING

UPPERCASE_STRING

special characters
Must be entered as shown

other_lowercase_string_in_parameter_list
Any GDL expression

GDL Reference Guide 27

COORDINATE TRANSFORMATIONS
This chapter tells you about the types of transformations available in GDL (moving, scaling, rotating the coordinate system) and the way they are interpreted and
managed.

About Transformations
In GDL, all the geometric elements are linked strictly to the local coordinate system. GDL uses a right-handed coordinate system. For example,
one corner of a block is in the origin and its sides are in the x-y, x-z and y-z planes.
Placing a geometric element in the desired position requires two steps. First, move the coordinate system to the desired position. Second,
generate the element. Every movement, rotation or stretching of the coordinate system along or around an axis is called a transformation.
Transformations are stored in a stack; interpretation starts from the last one backwards. Scripts inherit this stack; they can insert new elements
onto it but can only delete the locally defined ones. It is possible to delete one, more or all of the transformations defined in the current script.
After returning from a script, the locally defined transformations are removed from the stack.

2D TRANSFORMATIONS

These are the equivalents in the 2D space of the ADD, MUL and ROTZ 3D transformations.

ADD2

ADD2 x, y

Example:
ADD2 a, b

MUL2

MUL2 x, y

X

Y

X

Y

b

a

Coordinate Transformations

28 GDL Reference Guide

ROT2

ROT2 alpha

Example:
ROT2 beta

3D TRANSFORMATIONS

ADDX

ADDX dx

ADDY

ADDY dy

ADDZ

ADDZ dz

Moves the local coordinate system along the given axis by dx, dy or dz respectively.

X

Y

X

Y

beta

Coordinate Transformations

GDL Reference Guide 29

ADD

ADD dx, dy, dz

Replaces the sequence ADDX dx: ADDY dy: ADDZ dz.
It has only one entry in the stack, thus it can be deleted with DEL 1.
Example:
ADD a,b,c

MULX

MULX mx

MULY

MULY my

MULZ

MULZ mz

Scales the local coordinate system along the given axis. Negative mx, my, mz means simultaneous mirroring.

MUL

MUL mx, my, mz

Replaces the sequence MULX mx: MULY my: MULZ mz. It has only one entry in the stack, thus it can be deleted with DEL 1.

c

b

Z

a

Z

Y

Y

X

X

Coordinate Transformations

30 GDL Reference Guide

ROTX

ROTX alphax

ROTY

ROTY alphay

ROTZ

ROTZ alphaz

Rotates the local coordinate system around the given axis by alphax, alphay, alphaz degrees respectively, counterclockwise.
Example:

ROTZ beta

ROT

ROT x, y, z, alpha

Rotates the local coordinate system around the axis defined by the vector (x, y, z) by alpha degrees, counterclockwise.
It has only one entry in the stack, thus it can be deleted with DEL 1.

XFORM

XFORM a11, a12, a13, a14,
a21, a22, a23, a24,
a31, a32, a33, a34

Defines a complete transformations matrix. It is mainly used in automatic GDL code generation. It has only one entry in the stack.

Y

X

X

Z

Y

beta

Coordinate Transformations

GDL Reference Guide 31

x' = a11 * x + a12 * y + a13 * z + a14
y' = a21 * x + a22 * y + a23 * z + a24
z' = a31 * x + a32 * y + a33 * z + a34
Example:
A=60
B=30
XFORM 2, COS(A), COS(B)*0.6, 0,

 0, SIN(A), SIN(B)*0.6, 0,
0, 0, 1, 0

BLOCK 1, 1, 1

MANAGING THE TRANSFORMATION STACK

DEL n
DEL n [, begin_with]

Deletes n entries from the transformation stack.
If the begin_with parameter is not specified, deletes the previous n entries in the transformation stack. The local coordinate system moves back
to a previous position.
If the begin_with transformation is specified, deletes n entries forward, beginning with the one denoted by begin_with. Numbering starts with
1. If the begin_with parameter is specified and n is negative, deletes backward.
If fewer transformations were issued in the current script than denoted by the given n number argument, then only the issued transformations
are deleted.

DEL TOP

DEl TOP

Deletes all current transformations in the current script.

Coordinate Transformations

32 GDL Reference Guide

NTR

NTR ()

Returns the actual number of transformations.
Example:

BLOCK 1, 1, 1
ADDX 2
ADDY 2.5
ADDZ 1.5
ROTX -60
ADDX 1.5
BLOCK 1, 0.5, 2
DEL 1, 1 !Deletes the ADDX 2 transformation
BLOCK 1, 0.5, 1
DEL 1, NTR() -2 !Deletes the ADDZ 1.5 transformation
BLOCK 1, 0.5, 2
DEL -2, 3 !Deletes the ROTX -60 and ADDY 2.5 transformations
BLOCK 1, 0.5, 2

GDL Reference Guide 33

3D SHAPES
This chapter covers all the 3D shape creation commands available in GDL, from the most basic ones to the generation of complex shapes from polylines. Elements for
visualization (light sources, pictures) are also presented here, as well as the definition of text to be displayed in 3D. Furthermore, the primitives of the internal 3D data
structure consisting of nodes, vectors, edges and bodies are discussed in detail, followed by the interpretation of binary data and guidelines for using cutting planes.

BASIC SHAPES

BLOCK
BLOCK a, b, c

BRICK
BRICK a, b, c

The first corner of the block is in the local origin and the edges with lengths a, b and c are along the x-, y- and z-axes, respectively.
Zero values create degenerated blocks (rectangle or line).
Restriction of parameters:
a, b, c >= 0

Y

b

X

Z

a

c

3D Shapes

34 GDL Reference Guide

CYLIND
CYLIND h, r

Right cylinder, coaxial with the z-axis with a height of h and a radius of r.
If h=0, a circle is generated in the x-y plane.
If r=0, a line is generated along the z axis.

SPHERE
SPHERE r

A sphere with its center at the origin and with a radius of r.

r

Z

Y

X

r

Z

Y

X

h

Y

X

Z

r

3D Shapes

GDL Reference Guide 35

ELLIPS
ELLIPS h, r

Half ellipsoid. Its cross-section in the x-y plane is a circle with a radius of r centered at the origin. The length of the half axis along the z-axis is h.
Example:
ELLIPS r, r ! hemisphere

r
Y

Z

X

h

3D Shapes

36 GDL Reference Guide

CONE
CONE h, r1, r2, alpha1, alpha2

Frustum of a cone where alpha1 and alpha2 are the angles of inclination of the end surfaces to the z axis, r1 and r2 are the radii of the end-circles
and h is the height along the z axis.
If h=0, the values of alpha1 and alpha2 are disregarded and an annulus is generated in the x-y plane.
alpha1 and alpha2 are in degrees.
Restriction of parameters:
0 < alpha1 < 180° and 0 < alpha2 < 180°
Example:
CONE h, r, 0, 90, 90 ! a regular cone

r2

r1
Y

Z

X

Y Y

Z

Y

halpha1

alpha2

3D Shapes

GDL Reference Guide 37

PRISM
PRISM n, h, x1, y1, ... xn, yn

Right prism with its base polygon in the x-y plane (see the parameters of “POLY” on page 77 and “POLY_” on page 77). The height along the
z-axis is abs(h). Negative h values can also be used. In that case the second base polygon is below the x-y plane.
Restriction of parameters:
n >= 3

Y

n

Z

X 1
2

h

3D Shapes

38 GDL Reference Guide

PRISM_
PRISM_ n, h, x1, y1, s1, ... xn, yn, sn

Similar to the CPRISM_ statement, but any of the horizontal edges and sides can be omitted.
Restriction of parameters:
n >= 3
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.
Examples:

PRISM_ 4,1, PRISM_ 4,1,
0,0,15, 0,0,7,
1,1,15, 1,1,5,
2,0,15, 2,0,15,
1,3,15 1,3,15

3D Shapes

GDL Reference Guide 39

ROTX 90
PRISM_ 26, 1.2,

0.3, 0, 15,
0.3, 0.06, 15,
0.27, 0.06, 15,
0.27, 0.21, 15,
0.25, 0.23, 15,
-0.25, 0.23, 15,
-0.27, 0.21, 15,
-0.27, 0.06, 15,
-0.3, 0.06, 15,
-0.3, 0, 15,
0.3, 0, -1, !End of contour
0.10, 0.03, 15,
0.24, 0.03, 15,
0.24, 0.2, 15,
0.10, 0.2, 15,
0.10, 0.03, -1, !End of first hole
0.07, 0.03, 15,
0.07, 0.2, 15,
-0.07, 0.2, 15,
-0.07, 0.03, 15,
0.07, 0.03, -1, !End of second hole
-0.24, 0.03, 15,
-0.24, 0.2, 15,
-0.1, 0.2, 15,
-0.1, 0.03, 15,
-0.24, 0.03, -1 !End of third hole

3D Shapes

40 GDL Reference Guide

 j7 = 0 j7 = 1
R=1
H=3
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 15,
 COS(210)*R, SIN(210)*R, 15,
 COS(240)*R, SIN(240)*R, 15,
 COS(270)*R, SIN(270)*R, 15,
 COS(300)*R, SIN(300)*R, 15,
 COS(330)*R, SIN(330)*R, 15,
 COS(360)*R, SIN(360)*R, 15,
 R, R, 15
ADDX 5
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 64+15,
 COS(210)*R, SIN(210)*R, 64+15,
 COS(240)*R, SIN(240)*R, 64+15,
 COS(270)*R, SIN(270)*R, 64+15,
 COS(300)*R, SIN(300)*R, 64+15,
 COS(330)*R, SIN(330)*R, 64+15,
 COS(360)*R, SIN(360)*R, 64+15,
 R, R, 15

3D Shapes

GDL Reference Guide 41

CPRISM_
CPRISM_ top_material, bottom_material, side_material,

n, h, x1, y1, s1, ... xn, yn, sn

Extension of the PRISM_ statement. The first three parameters are used for the material name/index of the top, bottom and side surfaces. The
other parameters are the same as above in the PRISM_ statement.
Restriction of parameters:
n >= 3
See also “Materials” on page 196.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.
Example:

CPRISM_ "Iron", 0, T_, !"Iron" is a predefined material.
!0 is a general material.
!T_ is a global variable
!(a material index)

13, 0.2,
0, 0, 15,
2, 0, 15,
2, 2, 15,
0, 2, 15,
0, 0, -1, !end of the contour
0.2, 0.2, 15,
1.8, 0.2, 15,
1.0, 0.9, 15,
0.2, 0.2, -1, !end of first hole
0.2, 1.8, 15,
1.8, 1.8, 15,
1.0, 1.1, 15,
0.2, 1.8, -1 !end of second hole

3D Shapes

42 GDL Reference Guide

CPRISM_{2}
CPRISM_{2} top_material, bottom_material, side_material,

n, h,
x1, y1. alpha1, s1, mat1,
...
xn, yn, alphan, sn, matn

CPRISM_{2} is an extension of the CPRISM_ command with the possibility of defining different angles and materials for each side of the
prism.
The side angle definition is similar to the one of the CROOF_statement.
alphai the angle between the face belonging to the edge i of the prism and the plane perpendicular to the base
mati: material reference that allows you to control the material of the side surfaces

BPRISM_
BPRISM_ top_material, bottom_material, side_material,

n, h, radius, x1, y1, s1, ... xn, yn, sn

A smooth curved prism, based on the same data structure as the straight CPRISM_ element. The only additional parameter is radius.
Derived from the corresponding CPRISM_ by bending the x-y plane onto a cylinder tangential to that plane. Edges along the x axis are
transformed to circular arcs; edges along the y axis remain horizontal; edges along the z axis will be radial in direction.
See “BWALL_” on page 56 for details.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.
Examples (with the corresponding CPRISM_-s):
BPRISM_ "Glass", "Glass", "Glass",
 3, 0.4, 1, ! radius = 1
 0, 0, 15,
 5, 0, 15,
 1.3, 2, 15

3D Shapes

GDL Reference Guide 43

BPRISM_ "Concrete", "Concrete", "Concrete",
 17, 0.3, 5,

0, 7.35, 15,
 0, 2, 15,
 1.95, 0, 15,
 8, 0, 15,
 6.3, 2, 15,
 2, 2, 15,
 4.25, 4, 15,
 8, 4, 15,
 8, 10, 15,
 2.7, 10, 15,
 0, 7.35, -1,
 4, 8.5, 15,
 1.85, 7.05, 15,
 3.95, 5.6, 15,
 6.95, 5.6, 15,

3D Shapes

44 GDL Reference Guide

 6.95, 8.5, 15,
 4, 8.5, -1

3D Shapes

GDL Reference Guide 45

FPRISM_
FPRISM_ top_material, bottom_material, side_material, hill_material,

n, thickness, angle,hill_height,
x1, y1, s1,
...
xn, yn, sn

Similar to the PRISM_ statement, with the additional hill_material, angle and hill_height parameters. A hill part is added to the top of the right
prism.
hill_material: the side material of the hill part
angle: the inclination angle of the hill side edges. Restriction: 0 <= angle < 90. If angle = 0, the hill side edges seen from an

orthogonal view form a quarter circle with the current resolution (see the commands: “RADIUS” on page 188, “RESOL” on
page 189 and “TOLER” on page 190).

hill_height: the height of the hill. Note that the thickness parameter represents the whole height of the FPRISM_.
Restriction of parameters:
n >= 3, hill_height < thickness
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.

1

n

2

hill_height

thickness

angle

3D Shapes

46 GDL Reference Guide

Examples:
RESOL 10
FPRISM_ "Roof Tile", "Red Brick", "Face brick", "Roof Tile",

4, 1.5, 0, 1.0, !angle = 0
0, 0, 15,
5, 0, 15,
5, 4, 15,
0, 4, 15

3D Shapes

GDL Reference Guide 47

FPRISM_ "Roof Tile", "Red Brick", "Face brick",
"Roof Tile",
10, 2, 45, 1,
0, 0, 15,
6, 0, 15,
6, 5, 15,
0, 5, 15,
0, 0, -1,
1, 2, 15,
4, 2, 15,
4, 4, 15,
1, 4, 15,
1, 2, -1

HPRISM_
HPRISM_ top_mat, bottom_mat, side_mat,

hill_mat,
n, thickness, angle, hill_height, status,
x1, y1, s1,
...,
xn, yn, sn

Similar to FPRISM_, with an additional parameter controlling the visibility of the hill edges.
status: controls the visibility of the hill edges:
0: hill edges are all visible (FPRISM_)
1: hill edges are invisible

3D Shapes

48 GDL Reference Guide

SPRISM_
SPRISM_ top_material, bottom_material, side_material,

n, xb, yb, xe, ye, h, angle,
x1, y1, s1, ... xn, yn, sn

Extension of the CPRISM_ statement, with the possibility of having an upper polygon non-parallel with the x-y plane. The upper plane
definition is similar to the plane definition of the CROOF_ statement. The height of the prism is defined at the reference line. Upper and lower
polygon intersection is forbidden.
Additional parameters:

xb, yb, xe, ye: reference line (vector) starting and end coordinates,
angle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW),
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.

Note: All calculated z coordinates of the upper polygon nodes must be positive or 0.

n

h

1

2

(x ,y)b b

(x ,y)ee

angle

3D Shapes

GDL Reference Guide 49

Example:

SPRISM_ 'Grass', 'Earth', 'Earth',
6,
0, 0, 11, 6, 2, -10.0,
0, 0, 15,
10, 1, 15,
11, 6, 15,
5, 7, 15,
4.5, 5.5, 15,
 1, 6, 15

SPRISM_{2}
SPRISM_{2} top_material, bottom_material, side_material,

n,
xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle,
x1, y1, s1, mat1,
...
xn, yn, sn, matn

Extension of the SPRISM_ statement, with the possibility of having an upper and lower polygon non-parallel with the x-y plane. The definition
of the planes is similar to the plane definition of the CROOF_ statement. The top and bottom of the prism is defined at the reference line.
Upper and lower polygon intersection is forbidden.
Additional parameters:
xtb, ytb, xte, yte: reference line (vector) of the top polygon starting and end coordinates,
topz: the 'z' level of the reference line of the top polygon,
tangle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW),
xbb, ybb, xbe, ybe: reference line (vector) of the bottom polygon starting and end coordinates,
bottomz: the 'z' level of the reference line of the top polygon,
bangle: rotation angle of the lower polygon around the given oriented reference line in degrees (CCW),
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments and arcs in the polyline using special

3D Shapes

50 GDL Reference Guide

constraints.
See “Status Codes” on page 173 for details.
mati: material reference that allows you to control the material of the side surfaces.
Example:

SPRISM_{2} 'Grass', 'Earth', 'Earth',
11,
0, 0, 11, 0, 30, -30.0,
0, 0, 0, 11, 2, 30.0,

0, 0, 15, IND (MATERIAL, 'C10'),
10, 1, 15, IND (MATERIAL, 'C11'),
11, 6, 15, IND (MATERIAL, 'C12'),
5, 7, 15, IND (MATERIAL, 'C13'),
4, 5, 15, IND (MATERIAL, 'C14'),
1, 6, 15, IND (MATERIAL, 'C10'),

0, 0, -1, IND (MATERIAL, 'C15'),
9, 2, 15, IND (MATERIAL, 'C15'),

3D Shapes

GDL Reference Guide 51

10, 5, 15, IND (MATERIAL, 'C15'),
6, 4, 15, IND (MATERIAL, 'C15'),
9, 2, -1, IND (MATERIAL, 'C15')

3D Shapes

52 GDL Reference Guide

SLAB
SLAB n, h, x1, y1, z1, ... xn, yn, zn

Oblique prism. The lateral faces are always perpendicular to the x-y plane. Its bases are flat polygons rotated about an axis parallel with the x-y
plane. Negative h values can also be used. In that case the second base polygon is below the given one.
No check is made as to whether the points are really on a plane. Apices not lying on a plane will result in strange shadings/ renderings.
Restriction of parameters:
n >= 3

SLAB_
SLAB_ n, h, x1, y1, z1, s1, ... xn, yn, zn, sn

Similar to the SLAB statement, but any of the edges and faces of the side polygons can be omitted. This statement is an analogy of the PRISM_
statement.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.

Y

Z

X

3D Shapes

GDL Reference Guide 53

CSLAB_
CSLAB_ top_material, bottom_material, side_material,

n, h, x1, y1, z1, s1, ... xn, yn, zn, sn

Extension of the SLAB_ statement; the first three parameters are used for the material name/index of the top, bottom and side surfaces. The
other parameters are the same as above in the SLAB_ statement.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create

segments and arcs in the polyline using special constraints.
See “Status Codes” on page 173 for details.

CWALL_
CWALL_ left_material, right_material, side_material,

height, x1, x2, x3, x4, t,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm

Left_material, right_material, side_material:
Material names/indices for the left, right and side surfaces. (The left and right sides of the wall follow the x axis.)

The reference line of the wall is always transformed to coincide with the x axis. The sides of the wall are in the x-z plane.
height: The height of the wall relative to its base.
x1, x2, x3, x4: The projected endpoints of the wall lying on the x-y plane as seen below. If the wall stands on its own, then

x1 = x4 = 0, x2 = x3 = the length of the wall.

3D Shapes

54 GDL Reference Guide

t: the thickness of the wall.
t < 0 if the body of the wall is to the right of the x axis,
t > 0 if the body of the wall is to the left of the x axis,
t = 0 if the wall is represented by a polygon and frames are generated around the holes.

mask1, mask2, mask3, mask4: Control the visibility of edges and side polygons.
maski = j1 + 2*j2 + 4*j3 + 8*j4
where j1, j2, j3, j4 can be 0 or 1.
The j1, j2, j3, j4 numbers represent whether the vertices and the side are present (1) or omitted (0).
n: the number of openings in the wall.
x_starti, y_lowi, x_endi, y_highi: coordinates of the openings as shown below.

x4 x2x3x1

Y

X

t

j4

j3

Z

X

Y

j1

mask 1

j2

mask 4 mask 2

mask 3

3D Shapes

GDL Reference Guide 55

frame_showni values:
1, if the edges of the hole are visible;
0, if the edges of the hole are invisible.
Negative values control the visibility of each of the opening’s edges separately.

frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8), where j1, j2... j8 can be either 0 or 1. The numbers
j1 to j4 control the visibility of the edges of the hole on the left-hand side of the wall surface, while j5 to j8 affect the edges
on the right-hand side, as shown on the illustration below.

An edge that is perpendicular to the surface of the wall is visible if there are visible edges drawn from both of its endpoints.
m: the number of cutting planes.

X

Z

i

i

i

i

he
ig

ht

x_start

x_end

y_
lo

w y_
hi

gh

j4

j3

j1

j2

j5

j7

j6

j8

Y

Z

X

3D Shapes

56 GDL Reference Guide

ai, bi, ci, di: coefficients of the equation defining the cutting plane [ai*x + bi*y + ci*z = di]. Parts on the positive side of the cutting
plane (i.e., ai*x + bi*y + ci*z > di) will be cut and removed.

BWALL_
BWALL_ left_material, right_material, side_material,

height, x1, x2, x3, x4, t, radius,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm

A smooth curved wall based on the same data structure as the straight wall CWALL_ element. The only additional parameter is radius.
Derived from the corresponding CWALL_ by bending the x-z plane onto a cylinder tangential to that plane. Edges along the x axis are
transformed to circular arcs, edges along the y axis will be radial in direction, and vertical edges remain vertical. The curvature is approximated
by a number of segments set by the current resolution (see the commands: “RADIUS” on page 188, “RESOL” on page 189 and “TOLER” on
page 190).
See also “CWALL_” on page 53 for details.

[ai, bi, ci]

3D Shapes

GDL Reference Guide 57

3D Shapes

58 GDL Reference Guide

Examples: a BWALL_ and the corresponding CWALL_.

ROTZ -60
BWALL_ 1, 1, 1,

4, 0, 6, 6, 0,
0.3, 2,
15, 15, 15, 15,
5,
1, 1, 3.8, 2.5, -255,
1.8, 0, 3, 2.5, -255,
4.1, 1, 4.5, 1.4, -255,
4.1, 1.55, 4.5, 1.95,-255,
4.1, 2.1, 4.5, 2.5, -255,
1, 0, -0.25, 1, 3

3D Shapes

GDL Reference Guide 59

XWALL_
XWALL_ left_material, right_material, vertical_material,horizontal_material,

height, x1, x2, x3, x4,
y1, y2, y3, y4,
t, radius,
log_height, log_offset,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1,
frame_shown1,
...
x_startn, y_lown, x_endn, y_highn,
frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm,
status

Extended wall definition based on the same data structure as the BWALL_ element.
Additional parameters:
vertical_material, horizontal_material: name or index of the vertical/horizontal side materials.
y1, y2, y3, y4: the projected endpoints of the wall lying in the x-y plane as seen below.

log_height, log_offset: additional parameters allowing you to compose a wall from logs. Effective only for straight walls.

Y

X
y3

y1

y2

y4

x1 x2 x3 x4

3D Shapes

60 GDL Reference Guide

status: controls the behavior of log walls.
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8 + 256*j9
j1: apply right side material on horizontal edges
j2: apply left side material on horizontal edges
j3: start with half log
j6: align texture to wall edges
j7: double radius on bended side
j8: square log on the right side
j9: square log on the left side

logoffset

logheight

3D Shapes

GDL Reference Guide 61

Example:

XWALL_ "Whitewash", "Whitewash", "Whitewash", "Whitewash",
3.0,
0.0, 4.0, 4.0, 0.0,
0.0, 0.0, 0.3, 1.2,
1.2, 0.0,
0.0, 0.0,
15, 15, 15, 15,
3,
0.25, 0.0, 1.25, 2.5, -255,
1.25, 1.5, 2.25, 2.5, -255,
2.25, 0.5, 3.25, 2.5, -255, 0

3D Shapes

62 GDL Reference Guide

XWALL_{2}
XWALL_{2} left_material, right_material, vertical_material,horizontal_material,

height, x1, x2, x3, x4,
y1, y2, y3, y4,
t, radius,
log_height, log_offset,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1,
sill_depth1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn,
sill_depthn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm,
status

Extended wall definition based on the same data structure as the XWALL_ element.
Additional parameters:
silldepthi: logical depth of the opening sill. If the j9 bit of the frame_showni parameter is set, the wall side materials wraps the hole

polygons, silldepthi defining the separator line between them.
frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5
 + 32*j6 + 64*j7 + 128*j8 + 256*j9 + 512*j10)
There are two additional values to control the material wrapping. The meaning of the j1, j2 ... j8 values are the same as at the CWALL_ and
XWALL_ commands. The j9 value controls the material of the hole polygons. If j9 is 1, the hole inherits the side materials of the wall. The j10
value controls the form of the separator line between the hole materials on the upper and lower polygons of the hole in case of a bent wall. If the
j10 value is 1, the separator line will be straight, otherwise curved.

3D Shapes

GDL Reference Guide 63

Example:

ROTZ 90
xWALL_{2} "C13", "C11", "C12", "C12",

2, 0, 4, 4, 0,
0, 0, 1, 1,
1, 0,
0, 0,
15, 15, 15, 15,
1,
1, 0.9, 3, 2.1, 0.3, -(255 + 256),
0,
0

BODY -1
DEL 1
ADDX 2
xWALL_{2} "C13", "C11", "C12", "C12",

2, 0, 2 * PI, 2 * PI, 0,

3D Shapes

64 GDL Reference Guide

0, 0, 1, 1,
0, 0,
15, 15, 15, 15,
1,
1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256),
0,
0

BODY -1

ADDX 4
xWALL_{2} "C13", "C11", "C12", "C12",

2, 0, 2 * PI, 2 * PI, 0,
0, 0, 1, 1,
1, 2,
0, 0,
15, 15, 15, 15,
1,
1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256 + 512),
0,
0

3D Shapes

GDL Reference Guide 65

BEAM
BEAM left_material, right_material, vertical_material, top_material, bottom_material,

height, x1, x2, x3, x4,
y1, y2, y3, y4, t,
mask1, mask2, mask3, mask4

Beam definition. Parameters are similar to those of the XWALL_ element.
Additional parameters:
top_material, bottom_material: top and bottom materials
Example:

BEAM 1, 1, 1, 1, 1,
0.3, 0.0, 7.0, 7.0, 0.0,
0.0, 0.0, 0.1, 0.1, 0.5,
15, 15, 15, 15

CROOF_
CROOF_ top_material, bottom_material, side_material,

n, xb, yb, xe, ye, height, angle, thickness,
x1, y1, alpha1, s1,
...,
xn, yn, alphan, sn

A sloped roof pitch with custom angle ridges.
top_material, bottom_material, side_material: name/index of the top, bottom and side material.
n: the number of nodes in the roof polygon.
xb, yb, xe, ye: reference line (vector).
height: the height of the roof at the reference line (lower surface).
angle: the rotation angle of the roof plane around the given oriented reference line in degrees (CCW).

3D Shapes

66 GDL Reference Guide

thickness: the thickness of the roof measured perpendicularly to the plane of the roof.
xi, yi: the coordinates of the nodes of the roof ’s lower polygon.
alphai: the angle between the face belonging to the edge i of the roof and the plane perpendicular to the roof plane, -90° < alphai

< 90°. Looking in the direction of the edge of the properly oriented roof polygon, the CCW rotation angle is positive.
The edges of the roof polygon are oriented properly if, in top view, the contour is sequenced CCW and the holes are
sequenced CW.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create
segments and arcs in the polyline using special constraints.

See “Status Codes” on page 173 for details.
Restriction of parameters:
n >= 3

3D Shapes

GDL Reference Guide 67

Examples:

CROOF_ 1, 1, 1, ! materials
9,
0, 0,
1, 0, ! reference line (xb,yb)(xe,ye)
0.0, ! height
-30, ! angle
2.5, ! thickness
0, 0, -60, 15,
10, 0, 0, 15,
10, 20, -30, 15,
0, 20, 0, 15,
0, 0, 0, -1,
2, 5, 0, 15,
8, 5, 0, 15,
5, 15, 0, 15,
2, 5, 0, -1

L=0.25
R=(0.6^2+L^2)/(2*L)
A=ASN(0.6/R)
CROOF_ "Roof Tile", "Pine", "Pine",

16, 2, 0, 0,
0, 0, 45, -0.2*SQR(2),
0, 0, 0, 15,
3.5, 0, 0, 15,

3D Shapes

68 GDL Reference Guide

3.5, 3, -45, 15,
0, 3, 0, 15,
0, 0, 0, -1,
0.65, 1, -45, 15,
1.85, 1, 0, 15,
1.85, 2.4-L, 0, 13,
1.25, 2.4-R, 0, 900,
0, 2*A, 0, 4015,
0.65, 1, 0, -1,
2.5, 2, 45, 15,
3, 2, 0, 15,
3, 2.5, -45, 15,
2.5, 2.5, 0, 15,
2.5, 2, 0, -1

3D Shapes

GDL Reference Guide 69

CROOF_{2}
CROOF_{2} top_material, bottom_material, side_material,

n, xb, yb, xe, ye, height, angle thickness,
x1, y1, alpha1, s1, mat1
...
xn, yn, alphan, sn, matn

CROOF_{2} is an extension of the CROOF_statement with the possibility of defining different materials for the sides.
mati: material reference that allows you to control the material of the side surfaces

MESH
MESH a, b, m, n, mask,

z11, z12, ... z1m,
z21, z22, ... z2m,
...
zn1, zn2, ... znm

A simple smooth mesh based on a rectangle with an equidistant net. The sides of the base rectangle are a and b; the m and n points are along the
x and y axes respectively; zij is the height of the node.
Masking:

mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7
where j1, j3, j5, j6, j7 can be 0 or 1.
j1 (1): base surface is present.

i

n

m
1

Y

Zij

1

Z

X

j
b

a

3D Shapes

70 GDL Reference Guide

j3 (4): side surfaces are present.
j5 (16): base and side edges are visible.
j6 (32): top edges are visible.
j7 (64): top edges are visible, top surface is not smooth.
Parameter restrictions:
m >= 2, n >= 2

3D Shapes

GDL Reference Guide 71

Examples:

MESH 50, 30, 5, 6, 1+4+16+32+64,
2, 4, 6, 7, 8,
10, 3, 4, 5, 6,
7, 9, 5, 5, 7,
8, 10, 9, 4, 5,
6, 7, 9, 8, 2,
4, 5, 6, 8, 6

MESH 90,100, 12,8, 1+4+16+32+64,
 17,16,15,14,13,12,11,10,10,10,10, 9,
 16,14,13,11,10, 9, 9, 9,10,10,12,10,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,11,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,13,14,
 17,17,15,13,12,12,12,12,12,12,15,15,
 17,17,15,13,12,12,12,12,13,13,16,16

3D Shapes

72 GDL Reference Guide

ARMC
ARMC r1, r2, l, h, d, alpha

A piece of tube starting from another tube; parameters according to the figure (penetration curves are also calculated and drawn). alpha is in
degrees.
Restrictions of parameters:
r1 >= r2 + d
r1 <= l*sin(alpha) - r2*cos(alpha)

Y

X

Z

X

alpha

lh

r1

 r2

d

3D Shapes

GDL Reference Guide 73

Example:

ROTY 90
CYLIND 10,1
ADDZ 6
ARMC 1, 0.9, 3, 0, 0, 45
ADDZ -1
ROTZ -90
ARMC 1, 0.75, 3, 0, 0, 90
ADDZ -1
ROTZ -90
ARMC 1, 0.6, 3, 0, 0, 135

ARME
ARME l, r1, r2, h, d

A piece of tube starting from an ellipsoid in the y-z plane; parameters according to the figure (penetration lines are also calculated and drawn).
Restrictions of the parameters:
r1 >= r2+d
l >= h*√(1-(r2-d)2/r12)

Z

Y

r2

l

h

r1

d

3D Shapes

74 GDL Reference Guide

Example:
ELLIPS 3,4
FOR i=1 TO 6
 ARME 6,4,0.5,3,3.7-0.2*i
 ROTZ 30
NEXT i

Z

X

r1
alpha

r2

3D Shapes

GDL Reference Guide 75

ELBOW
ELBOW r1, alpha, r2

A segmented elbow in the x-z plane. The radius of the arc is r1, the angle is alpha and the radius of the tube segment is r2. The alpha value is in
degrees.
Restriction of parameters:
r1 > r2
Example:

ROTY 90
ELBOW 2.5, 180, 1
ADDZ -4
CYLIND 4, 1
ROTZ -90
MULZ -1
ELBOW 5, 180, 1
DEL 1
ADDX 10
CYLIND 4, 1
ADDZ 4
ROTZ 90
ELBOW 2.5, 180,1

3D Shapes

76 GDL Reference Guide

PLANAR SHAPES IN 3D
The drawing elements presented in this section can be used in 3D scripts, allowing you to define points, lines, arcs, circles and planar polygons in
the three-dimensional space.

HOTSPOT
HOTSPOT x, y, z [, unID [, paramReference, flags] [, displayParam]]

A 3D hotspot in the point (x, y, z).
unID is the unique identifier of the hotspot in the 3D script. It is useful if you have a variable number of hotspots.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can

be passed as well.
See “Graphical Editing” on page 167 for using HOTSPOT.

LIN_
LIN_ x1, y1, z1, x2, y2, z2

A line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

RECT
RECT a, b

A rectangle in the x-y plane with sides a and b.
Restriction of parameters:
a, b >= 0

X

Y

a
b

3D Shapes

GDL Reference Guide 77

POLY
POLY n, x1, y1, ... xn, yn

A polygon with n edges in the x-y plane. The coordinates of nodei are (xi, yi, 0).
Restriction of parameters:
n >= 3

POLY_
POLY_ n, x1, y1, s1, ... xn, yn, sn

Similar to the normal POLY statement, but any of the edges can be omitted. If si = 0, the edge starting from the (xi,yi) apex will be omitted. If
si = 1, the edge will be shown.
si = -1 is used to define holes directly.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.

Restriction of parameters:
n >= 3

PLANE
PLANE n, x1, y1, z1, ... xn, yn, zn

n

X

1 32

Y

n

X

1 32

Y

n

X

1 32

Y

3D Shapes

78 GDL Reference Guide

A polygon with n edges on an arbitrary plane. The coordinates of nodei are (xi, yi, zi). The polygon must be planar in order to get a correct
shading/rendering result, but the interpreter does not check this condition.
Restriction of parameters:
n >= 3

PLANE_
PLANE_ n, x1, y1, z1, s1, ... xn, yn, zn, sn

Similar to the normal PLANE statement, but any of the edges can be omitted as in the POLY_ statement.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175.
Restriction of parameters:
n >= 3

CIRCLE
CIRCLE r

A circle in the x-y plane with its center at the origin and with a radius of r.

r

3D Shapes

GDL Reference Guide 79

ARC
ARC r, alpha, beta

An arc (in Wireframe mode) or sector (in other modes) in the x-y plane with its center at the origin from angle alpha to beta with a radius of r.
alpha and beta are in degrees.

SHAPES GENERATED FROM POLYLINES

These elements let you create complex 3D shapes using a polyline and a built-in rule. You can rotate, project or translate the given polyline. The
resulting bodies are a generalization of some previously described elements like PRISM_ and CYLIND.
Shapes generated from a single polyline:
 EXTRUDE
 PYRAMID
 REVOLVE
Shapes generated from two polylines:
 RULED
 SWEEP
 TUBE
 TUBEA
The first polyline is always in the x-y plane. Points are determined by two coordinates; the third value is the status (see below). The second
polyline (for RULED and SWEEP) is a space curve. Apices are determined by three coordinate values.
Shape generated from four polylines:
COONS
Shape generated from any number of polylines:
MASS

 alpha

beta

Y

X

3D Shapes

80 GDL Reference Guide

General restrictions for polylines
• Adjacent vertices must not be coincident (except RULED).
• The polyline must not intersect itself (this is not checked by the program, but hidden line removal and rendering will be incorrect).
• The polylines may be either open or closed. In the latter case, the first node must be repeated after the last one of the contour.

Masking
Mask values are used to show or hide characteristic surfaces and/or edges of the 3D shape. The mask values are specific to each element and
you can find a more detailed description in their corresponding sections/chapters.
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7
where j1, j2, j3, j4, j5, j6, j7 can be 0 or 1.
j1, j2, j3, j4 represent whether the surfaces are present (1)

or omitted (0).
j5, j6, j7 represent whether the edges are visible (1)

or invisible (0).
j1: base surface.
j2: top surface.
j3: side surface.
j4: other side surface.
j5: base edges.
j6: top edges.
j7: cross-section/surface edges are visible, surface is not smooth.
To enable all faces and edges, set mask value to 127.

Status
Status values are used to state whether a given point of the polyline will leave a sharp trace of its rotation path behind.
0: latitudinal arcs/lateral edges starting from the node are all visible.
1: latitudinal arcs/lateral edges starting from the node are used only for showing the contour.
-1: for EXTRUDE only: it marks the end of the enclosing polygon or a hole, and means that the next node will be the first node of

another hole.
Additional status codes allow you to create segments and arcs in the polyline using special constraints.
See “Additional Status Codes” on page 175 for details.
To create a smooth 3D shape, set all status values to 1. Use status = 0 to create a ridge.

3D Shapes

GDL Reference Guide 81

Other values are reserved for future enhancements.

EXTRUDE
EXTRUDE n, dx, dy, dz, mask, x1, y1, s1,

..., xn, yn, sn

General prism using a polyline base in the x-y plane. The displacement vector between bases is (dx, dy, dz).
This is a generalization of the PRISM and SLAB statements. The base polyline is not necessarily closed, as the lateral edges are not always
perpendicular to the x-y plane. The base polyline may include holes, just like PRISM_. It is possible to control the visibility of the contour edges.
n: the number of polyline nodes.
mask: controls the existence of the bottom, top and (in the case of an open polyline) side polygon.
si: status of the lateral edges or marks the end of the polygon or of a hole. You can also define arcs and segments in the polyline

using additional status code values.
Parameter restriction:
n > 2
Masking:
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 65*j7 +128*j8
where j1, j2, j3, j5, j6, j7, j8 can be 0 or 1.
j1 (1): base surface is present.
j2 (2): top surface is present.
j3 (4): side (closing) surface is present.
j5 (16): base edges are visible.

Z

X 1

2

n

Y

j1

j2

j3

j5

j6

3D Shapes

82 GDL Reference Guide

j6 (32): top edges are visible.
j7 (64): cross-section edges are visible, surface is articulated.
j8 (128): cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.
Status values:
0: lateral edge starting from the node is visible.
1: lateral edges starting from the node are used for showing the contour.
-1: marks the end of the enclosing polygon or a hole, and means that the next node will be the first vertex of another hole.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.
Examples:

EXTRUDE 14, 1, 1, 4, 1+2+4+16+32,
0, 0, 0,
1, -3, 0,
2, -2, 1,
3, -4, 0,
4, -2, 1,

3D Shapes

GDL Reference Guide 83

5, -3, 0,
6, 0, 0,
3, 4, 0,
0, 0, -1,
2, 0, 0,
3, 2, 0,
4, 0, 0,
3, -2, 0,
2, 0, -1

A=5: B=5
R=2: S=1
C=R-S
D=A-R
E=B-R
EXTRUDE 28, -1, 0, 4, 1+2+4+16+32,

0, 0, 0,
D+R*SIN(0), R-R*COS(0), 1,
D+R*SIN(15), R-R*COS(15), 1,
D+R*SIN(30), R-R*COS(30), 1,
D+R*SIN(45), R-R*COS(45), 1,
D+R*SIN(60), R-R*COS(60), 1,
D+R*SIN(75), R-R*COS(75), 1,
D+R*SIN(90), R-R*COS(90), 1,
A, B, 0,
0, B, 0,
0, 0, -1,
C, C, 0,
D+S*SIN(0), R-S*COS(0), 1,
D+S*SIN(15), R-S*COS(15), 1,
D+S*SIN(30), R-S*COS(30), 1,
D+S*SIN(45), R-S*COS(45), 1,
D+S*SIN(60), R-S*COS(60), 1,
D+S*SIN(75), R-S*COS(75), 1,
D+S*SIN(90), R-S*COS(90), 1,
A-C,B-C,0,
R-S*COS(90), E+S*SIN(90), 1,
R-S*COS(75), E+S*SIN(75), 1,
R-S*COS(60), E+S*SIN(60), 1,
R-S*COS(45), E+S*SIN(45), 1,
R-S*COS(30), E+S*SIN(30), 1,
R-S*COS(15), E+S*SIN(15), 1,
R-S*COS(0), E+S*SIN(0), 1,
C, C, -1

3D Shapes

84 GDL Reference Guide

3D Shapes

GDL Reference Guide 85

PYRAMID
PYRAMID n, h, mask, x1, y1, s1, ... xn, yn, sn

Pyramid based on a polyline in the x-y plane. The peak of the pyramid is located at (0, 0, h).
n: number of polyline nodes.
mask: controls the existence of the bottom and (in the case of an open polyline) side polygon.
si: status of the lateral edges.
Parameter restrictions:
h > 0 and n > 2
Masking:
mask = j1 + 4*j3 + 16*j5
where j1, j3, j5 can be 0 or 1.
j1 (1): base surface is present.
j3 (4): side (closing) surface is present.
j5 (16): base edges are visible.
Status values:
0: lateral edges starting from the node are all visible.
1: lateral edges starting from the node are used for showing the contour.

1

Z

2

n

X

j3

j1

Y

j5

h

3D Shapes

86 GDL Reference Guide

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.
Example:

PYRAMID 4, 1.5, 1+4+16,
-2, -2, 0,
-2, 2, 0,
2, 2, 0,
2, -2, 0

PYRAMID 4, 4, 21,
-1, -1, 0,
1, -1, 0,
1, 1, 0,
-1, 1, 0

ADDX -1.4
ADDY -1.4
GOSUB 100
ADDX 2.8
GOSUB 100
ADDY 2.8
GOSUB 100
ADDX -2.8
GOSUB 100
END
100:
PYRAMID 4, 1.5, 21,

-0.25, -0.25, 0,
0.25, -0.25, 0,
0.25, 0.25, 0,
-0.25, 0.25, 0

RETURN

3D Shapes

GDL Reference Guide 87

REVOLVE
REVOLVE n, alpha, mask, x1, y1, s1, ... xn, yn, sn

Surface generated by rotating a polyline defined in the x-y plane around the x axis.
n: number of polyline nodes.
alpha: sweep angle in degrees.
mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
si: status of the latitudinal arcs.
Parameter restrictions:
n >= 2
yi >= 0.0
yi and yi + 1 (i.e., the y value of two neighboring nodes) cannot be zero at the same time.
Masking:
mask = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 128*j8
where j1, j2, j5, j6, j7, j8 can be 0 or 1.
j1 (1): base surface is present.
j2 (2): end surface is present.

j6

j1

j3

j2

j4

1

n

Z

2

Y

j5

alpha

3D Shapes

88 GDL Reference Guide

j5 (16): base edges (at x2, y2, z2) are visible.
j6 (32): end edges (at xm-1, ym-1, zm-1) are visible.
j7 (64): cross-section edges are visible, surface is articulated.
j8 (128): cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.
Status values:
0: latitudinal arcs starting from the node are all visible.
1: latitudinal arcs starting from the node are used for showing the contour.
2: when using ArchiCAD/ArchiFM or Z-buffer Rendering Engine and setting Smooth Surfaces, the latitudinal edge belonging to

this point defines a break. This solution is equivalent to the definition of additional nodes. The calculation is performed by
the compiler. With other rendering methods, it has the same effect as using 0.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.
REVOLVE{2} n, alphaOffset, alpha, mask, siedMat, x1, y1, s1, mat1, ...xn, yn, sn, matn

Advanced version of REVOLVE, where the start angle and the face materials are conrolable.
alphaOffset: sweep start angle
alpha: sweep angle length in degrees, may be negative
sideMat: material of the closing faces
mati: material of the face generated from the i-th edge

3D Shapes

GDL Reference Guide 89

Examples:

ROTY -90
REVOLVE 22, 360, 1+64,

0, 1.982, 0,
0.093, 2, 0,
0.144, 1.845, 0,
0.220, 1.701, 0,
0.318, 1.571, 0,
0.436, 1.459, 0,
0.617, 1.263, 0,
0.772, 1.045, 0,
0.896, 0.808, 0,
0.987, 0.557, 0,
1.044, 0.296, 0,
1.064, 0.030, 0,
1.167, 0.024, 0,
1.181, 0.056, 0,
1.205, 0.081, 0,

3D Shapes

90 GDL Reference Guide

1.236, 0.096, 0,
1.270, 0.1, 0,
1.304, 0.092, 0,
1.333, 0.073, 0,
1.354, 0.045, 0,
1.364, 0.012, 0,
1.564, 0, 0

workaround without the same result with
status code 2: status code 2:
ROTY -90 ROTY -90
REVOLVE 26, 180, 16+32, REVOLVE 18, 180, 48,
7, 1, 0, 7, 1, 0,
6.0001, 1, 1, 6, 1, 2,
6, 1, 0, 5.5, 2, 2,
5.9999, 1.0002, 1, 5, 1, 2,
5.5001, 1.9998, 1, 4, 1, 2,
5.5, 2, 0, 3+COS(15), 1+SIN(15), 1,
5.4999, 1.9998, 1, 3+COS(30), 1+SIN(30), 1,
5.0001, 1.0002, 1, 3+COS(45), 1+SIN(45), 1,
5, 1, 0, 3+COS(60), 1+SIN(60), 1,
4.9999, 1, 1, 3+COS(75), 1+SIN(75), 1,
4.0001, 1, 1, 3, 2, 1,
4, 1, 0, 3+COS(105), 1+SIN(105), 1,
3+COS(15), 1+SIN(15), 1, 3+COS(120), 1+SIN(120), 1,
3+COS(30), 1+SIN(30), 1, 3+COS(135), 1+SIN(135), 1,
3+COS(45), 1+SIN(45), 1, 3+COS(150), 1+SIN(150), 1,
3+COS(60), 1+SIN(60), 1, 3+COS(165), 1+SIN(165), 1,
3+COS(75), 1+SIN(75), 1, 2, 1, 2,
3, 2, 1, 1, 1, 0
3+COS(105), 1+SIN(105), 1,
3+COS(120), 1+SIN(120), 1,
3+COS(135), 1+SIN(135), 1,
3+COS(150), 1+SIN(150), 1,
3+COS(165), 1+SIN(165), 1,
2, 1, 0,
1.9999, 1, 0,
1, 1, 0

3D Shapes

GDL Reference Guide 91

RULED
RULED n, mask,

u1, v1, s1, ... un, vn, sn,
x1, y1, z1, ... xn, yn, zn

3D Shapes

92 GDL Reference Guide

RULED{2}
RULED{2} n, mask,

u1, v1, s1, ... un, vn, sn,
x1, y1, z1, ... xn, yn, zn

RULED is a surface based on a planar curve and a space curve having the same number of nodes. Straight segments connect the corresponding
nodes of the two polylines.
This is the only GDL element allowing the neighboring nodes to overlap.
The second version, RULED {2}, checks the direction (clockwise or counterclockwise) in which the points of both the top polygon and base
polygon were defined, and reverses the direction if necessary. (The original RULED command takes only the base polygon into account, which
can lead to errors.)
n: number of polyline nodes in each curve.
mask: controls the existence of the bottom, top and side polygon and the visibility of the edges on the generator polylines. The side

polygon connects the first and last nodes of the curves, if any of them are not closed.
ui, vi: coordinates of the planar curve nodes.
si: status of the lateral edges.
xi, yi, zi: coordinates of the space curve nodes.
Parameter restriction:
n > 1

j3

j6
1

n

j2

j5

1

Z

2

n

X
j1

Y

2

3D Shapes

GDL Reference Guide 93

Masking:
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7
where j1, j2, j3, j5, j6, j7 can be 0 or 1.
j1 (1): base surface is present.
j2 (2): top surface is present (not effective if the top surface is not planar).
j3 (4): side surface is present (a planar quadrangle or two triangles).
j5 (16): edges on the planar curve are visible.
j6 (32): edges on the space curve are visible.
j7 (64): edges on the surface are visible, surface is not smooth.
Status values:
0: lateral edges starting from the node are all visible.
1: lateral edges starting from the node are used for showing the contour.

3D Shapes

94 GDL Reference Guide

Examples:

R=3
RULED 16, 1+2+4+16+32,
 COS(22.5)*R, SIN(22.5)*R, 0,
 COS(45)*R, SIN(45)*R, 0,
 COS(67.5)*R, SIN(67.5)*R, 0,
 COS(90)*R, SIN(90)*R, 0,
 COS(112.5)*R, SIN(112.5)*R, 0,
 COS(135)*R, SIN(135)*R, 0,
 COS(157.5)*R, SIN(157.5)*R, 0,
 COS(180)*R, SIN(180)*R, 0,
 COS(202.5)*R, SIN(202.5)*R, 0,
 COS(225)*R, SIN(225)*R, 0,
 COS(247.5)*R, SIN(247.5)*R, 0,
 COS(270)*R, SIN(270)*R, 0,
 COS(292.5)*R, SIN(292.5)*R, 0,
 COS(315)*R, SIN(315)*R, 0,
 COS(337.5)*R, SIN(337.5)*R, 0,
 COS(360)*R, SIN(360)*R, 0,
 COS(112.5)*R, SIN(112.5)*R, 1,
 COS(135)*R, SIN(135)*R, 1,
 COS(157.5)*R, SIN(157.5)*R, 1,
 COS(180)*R, SIN(180)*R, 1,
 COS(202.5)*R, SIN(202.5)*R, 1,
 COS(225)*R, SIN(225)*R, 1,
 COS(247.5)*R, SIN(247.5)*R, 1,
 COS(270)*R, SIN(270)*R, 1,

3D Shapes

GDL Reference Guide 95

 COS(292.5)*R, SIN(292.5)*R, 1,
 COS(315)*R, SIN(315)*R, 1,
 COS(337.5)*R, SIN(337.5)*R, 1,
 COS(360)*R, SIN(360)*R, 1,
 COS(22.5)*R, SIN(22.5)*R, 1,
 COS(45)*R, SIN(45)*R, 1,
 COS(67.5)*R, SIN(67.5)*R, 1,
 COS(90)*R, SIN(90)*R, 1

SWEEP
SWEEP n, m, alpha, scale, mask,

u1, v1, s1, ... un, vn, sn,
x1, y1, z1, ... xm, ym, zm

Surface generated by a polyline sweeping along a polyline space curve path.
The plane of the polyline follows the path curve. The space curve has to start from the x-y plane. If this condition is not met, it is moved along
the z axis to start on the x-y plane.
The cross-section at point (xi, yi, zi) is perpendicular to the space curve segment between points (xi-1, yi-1, zi-1) and (xi, yi, zi).
SWEEP can be used to model the spout of a teapot and other complex shapes.
n: number of polyline nodes.
m: number of path nodes.
alpha: incremental polyline rotation on its own plane, from one path node to the next one.
scale: incremental polyline scale factor, from one path node to the next one.
mask: controls the existence of the bottom and top polygons’ surfaces and edges.
ui, vi: coordinates of the base polyline nodes.
si: status of the lateral edges.
xi, yi, zi: coordinates of the path curve nodes.
Parameter restrictions:
n > 1
m > 1
z1 < z2

3D Shapes

96 GDL Reference Guide

Masking:

mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7
where j1, j2, j3, j5, j6, j7 can be 0 or 1.
j1 (1): base surface is present.
j2 (2): top surface is present.
j3 (4): side surface is present.
j5 (16): base edges are visible.
j6 (32): top edges are visible.
j7 (64): cross-section edges are visible, surface is articulated.
Status values:
0: lateral edges starting from the node are all visible.
1: lateral edges starting from the node are used for showing the contour.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.

j3

j2

j5

j6

2

1

Z

2

n

X
j1

Y

m

1

3D Shapes

GDL Reference Guide 97

Examples:

SWEEP 4, 12, 7.5, 1, 1+2+4+16+32,
-0.5, -0.25, 0,
0.5, -0.25, 0,
0.5, 0.25, 0,
-0.5, 0.25, 0,
0, 0, 0.5,
0, 0, 1,
0, 0, 1.5,
0, 0, 2,
0, 0, 2.5,
0, 0, 3,
0, 0, 3.5,
0, 0, 4,
0, 0, 4.5,
0, 0, 5,
0, 0, 5.5,
0, 0, 6

3D Shapes

98 GDL Reference Guide

3D Shapes

GDL Reference Guide 99

TUBE
TUBE n, m, mask,

u1, w1, s1,
...
un, wn, sn,
x1, y1, z1, angle1,
...
xm, ym, zm, anglem

Surface generated by a polyline sweeping along a space curve path without distortion of the generating cross-section. The internal connection
surfaces are rotatable in the U-W plane of the instantaneous U-V-W coordinate system.
V axis: approximates the tangent of the generator curve at the corresponding point,
W axis: perpendicular to the V axis and pointing upward with respect to the local z axis,
U axis: perpendicular to the V and W axes and forms with them a right-hand sided Cartesian coordinate system.
If the V axis is vertical, then the W direction is not correctly defined. The W axis in the previous path node is used for determining a horizontal
direction.
The cross-section polygon of the tube measured at the middle of the path segments is always equal to the base polygon (u1, w1, ... un, wn).
Section polygons in joints are situated in the bisector plane of the joint segments. The base polygon must be closed.
n: number of the polyline nodes.
m: number of the path nodes.
ui, wi: coordinates of the base polyline nodes.
si: status of the lateral edges.
xi, yi, zi: coordinates of the path curve nodes.

Note: The path comprises two points more than the number of generated sections. The first and the last points determine the position in
space of the first and the last surfaces belonging to the TUBE. These points only play a role in determining the normal of the surfaces, they
are not actual nodes of the path. The orientation of the surfaces is the same as that of the surfaces that would be generated at the nodes
nearest to the two endpoints, if the TUBE were continued in the directions indicated by these.)

anglei: rotation angle of the cross-section.
Masking:
mask = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 128*j8
where j1, j2, j5, j6, j7, j8 can be 0 or 1.

3D Shapes

100 GDL Reference Guide

j1 (1): base surface is present.
j2 (2): end surface is present.
j5 (16): base edges (at x2, y2, z2) are visible.
j6 (32): end edges (at xm-1, ym-1, zm-1) are visible.
j7 (64): cross-section edges are visible, surface is articulated.
j8 (128): cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering
Parameter restrictions:
n > 2 and m > 3
Status values:
0: lateral edges starting from the node are all visible.
1: lateral edges starting from the node are used for showing the contour.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Parametric Objects” in the Virtual Building chapter of the ArchiCAD Help.
Examples:

W

U

W
m

m-1

2
1

alpha

V

U

3D Shapes

GDL Reference Guide 101

TUBE 4, 18, 16+32,

2.0, 0.0, 0,
0.0, 0.0, 0,
0.0, 0.4, 0,
2.0, 0.4, 0,
-1, 0, 0, 0,
0, 0, 0, 0,
4, 0, 0.1, 0,
6, 0, 0.15, 0,

6+4*SIN(15), 4 - 4*COS(15), 0.2, 0,
6+4*SIN(30), 4 - 4*COS(30), 0.25, 0,
6+4*SIN(45), 4 - 4*COS(45), 0.3, 0,
6+4*SIN(60), 4 - 4*COS(60), 0.35, 0,
6+4*SIN(75), 4 - 4*COS(75), 0.4, 0,
10, 4, 0.45, 0,
6+4*SIN(105), 4 - 4*COS(105), 0.5, 0,
6+4*SIN(120), 4 - 4*COS(120), 0.55, 0,
6+4*SIN(135), 4 - 4*COS(135), 0.6, 0,
6+4*SIN(150), 4 - 4*COS(150), 0.65, 0,
6+4*SIN(165), 4 - 4*cos(165), 0.7, 0,
6, 8, 0.75, 0,
0, 8, 1, 0,
-1, 8, 1, 0

TUBE 14, 6, 1+2+16+32,
 0, 0,0,
 0.03, 0,0,
 0.03, 0.02, 0,
 0.06, 0.02, 0,
 0.05, 0.0699, 0,
 0.05, 0.07, 1,
 0.05, 0.15, 901,
 1, 0, 801,

3D Shapes

102 GDL Reference Guide

 0.08, 90, 2000,
 0.19, 0.15, 0,
 0.19, 0.19, 0,
 0.25, 0.19, 0,
 0.25, 0.25, 0,
 0, 0.25, 0,
 0, 1, 0, 0,
 0, 0.0001, 0, 0,
 0, 0, 0, 0,
 -0.8, 0, 0, 0,
 -0.8, 0.0001, 0, 0,
 -0.8, 1, 0, 0

TUBE 3, 7, 16+32,
 0, 0, 0,
 -0.5, 0, 0,
 0, 0.5, 0,

0.2, 0, -0.2, 0,
 0, 0, 0, 0,
 0, 0, 5, 0,
 3, 0, 5, 0,
 3, 4, 5, 0,
 3, 4, 0, 0,
 3, 3.8, -0.2, 0

3D Shapes

GDL Reference Guide 103

3D Shapes

104 GDL Reference Guide

TUBEA
TUBEA n, m, mask,

u1, w1, s1,
...
un, wn, sn,
x1, y1, z1,
...
xm, ym, zm

TUBEA is a surface generated by a polyline sweeping along a space curve path with a different algorithm than that of the TUBE statement.
The section polygon generated in each joint of the path curve is equal with the base polygon (u1, w1, ... un, wn) and is situated in the bisector
plane of the projections of the joint segments to the local x-y plane. The base polygon can be opened: in this case the section polygons will be
generated to reach the local x-y plane as in the case of REVOLVE surfaces.
The cross section of the tube measured at the middle of the path segments can be different from the base polygon.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.
Examples:

TUBEA 9, 7, 1 + 2 + 16 + 32,
 -1, 1, 0,
 0, 2, 0,
 0.8, 2, 0,
 0.8, 1.6, 0,
 0.8001, 1.6, 1,

2
m-1 m1

1

n

bisector plane

3D Shapes

GDL Reference Guide 105

 3.2, 1.6, 0,
 3.2, 2, 0,
 4, 2, 0,
 5, 1, 0,
 0, -7, 0,
 0, 0, 0,
 4, 0, 1,
 9, 3, 2.25,
 9, 10, 2.25,
 14, 10, 2.25,
 20, 15, 5

3D Shapes

106 GDL Reference Guide

COONS
COONS n, m, mask,

x11, y11, z11, ... x1n, y1n, z1n,
x21, y21, z21, ... x2n, y2n, z2n,
x31, y31, z31, ... x3m, y3m, z3m,
x41, y41, z41, ... x4m, y4m, z4m

A Coons patch generated from four boundary curves.
Masking:

mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7
where j3, j4, j5, j6, j7 can be 0 or 1.
j3 (4): edges of the 1st boundary (x1, y1, z1) are visible.
j4 (8): edges of the 2nd boundary (x2, y2, z2) are visible.
j5 (16): edges of the 3rd boundary (x3, y3, z3) are visible.
j6 (32): edges of the 4th boundary (x4, y4, z4) are visible.
j7 (64): edges on surface are visible, surface is not smooth.
Parameter restrictions:
n, m > 1
Examples:
COONS 6, 6, 4+8+16+32+64,
 ! 1st boundary, n=6
 0, 0, 5,
 1, 0, 4,

4(m)

2(n)

3(m)

1(n)

Z

Y

X

3D Shapes

GDL Reference Guide 107

 2, 0, 3,
 3, 0, 2,
 4, 0, 1,
 5, 0, 0,
 ! 2nd boundary, n=6
 0, 5, 0,
 1, 5, 1,
 2, 5, 2,
 3, 5, 3,
 4, 5, 4,
 5, 5, 5,
 ! 3rd boundary, m=6
 0, 0, 5,
 0, 1, 4,
 0, 2, 3,
 0, 3, 2,
 0, 4, 1,
 0, 5, 0,
 ! 4th boundary, m=6
 5, 0, 0,
 5, 1, 1,
 5, 2, 2,
 5, 3, 3,
 5, 4, 4,
 5, 5, 5
ROTZ -90
ROTY 90

3D Shapes

108 GDL Reference Guide

COONS 7, 6, 4+8+16+32+64,
 ! 1st boundary, n=7
 1, 2, 0,
 0.5, 1, 0,
 0.2, 0.5, 0,
 -0.5, 0, 0,
 0.2, -0.5, 0,
 0.5, -1, 0,
 1, -2, 0,
 ! 2nd boundary, n=7
 6, 10, -2,
 6.5, 4, -1.5,
 5, 1, -1.2,
 4, 0, -1,
 5, -1, -1.2,
 6.5, -4, -1.5,
 6, -10, -2,
 ! 3rd boundary, m=6
 1, 2, 0,
 2, 4, -0.5,
 3, 6, -1,
 4, 8, -1.5,
 5, 9, -1.8,
 6, 10, -2,
 ! 4th boundary, m=6
 1, -2, 0,
 2, -4, -0.5,
 3, -6, -1,
 4, -8, -1.5,
 5, -9, -1.8,
 6, -10, -2

3D Shapes

GDL Reference Guide 109

MASS
MASS top_material, bottom_material, side_material,

n, m, mask, h,
x1, y1, z1, s1,
...
xn, yn, zn, sn,
xn+1, yn+1, zn+1, sn+1,
...
xn+m, yn+m, zn+m, sn+m

The equivalent of the shape generated by the Mesh tool in ArchiCAD.
top_material, bottom_material, side_material: name/index of the top, bottom and side materials
n: the number of nodes in the mass polygon.
m: the number of nodes on the ridges.
h: the height of the skirt (can be negative).
xi, yi, zi: the coordinates of the nodes.
si: similar to the PRISM_ statement. Additional status codes allow you to create segments and arcs in the planar polyline using

special constraints.
See “Additional Status Codes” on page 175 for details.
Masking:

i

n

m
1

Y

Zij

1

Z

X

j
b

a

3D Shapes

110 GDL Reference Guide

mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7
where j1, j3, j5, j6, j7 can be 0 or 1.
j1 (1): base surface is present.
j3 (4): side surfaces are present.
j5 (16): base and side edges are visible.
j6 (32): top edges are visible.
j7 (64): top edges are visible, top surface is not smooth.
j8 (128): all ridges will be sharp, but the surface is smooth.
Parameter restrictions:
n >=3, m >= 0
Example:
MASS "Whitewash", "Whitewash", "Whitewash",
 15, 12, 117, -5.0,
 0, 12, 0, 15,
 8, 12, 0, 15,
 8, 0, 0, 15,
 13, 0, 0, 13,
 16, 0, 0, 13,
 19, 0, 0, 13,
 23, 0, 0, 13,
 24, 0, 0, 15,
 24, 12, 0, 15,
 28, 12, 0, 15,
 28, 20, 8, 13,
 28, 22, 8, 15,
 0, 22, 8, 15,
 0, 20, 8, 13,
 0, 12, 0, -1,

 0, 22, 8, 0,
 28, 22, 8, -1,
 23, 17, 5, 0,
 23, 0, 5, -1,
 13, 13, 1, 0,
 13, 0, 1, -1,
 16, 0, 7, 0,
 16, 19, 7, -1,
 0, 20, 8, 0,

3D Shapes

GDL Reference Guide 111

 28, 20, 8, -1,
 19, 17, 5, 0,
 19, 0, 5, -1

3D Shapes

112 GDL Reference Guide

ELEMENTS FOR VISUALIZATION

LIGHT
LIGHT red, green, blue, shadow,

radius, alpha, beta, angle_falloff,
distance1, distance2,
distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
name2 = value2, ...]

A light source radiates [red, green, blue] colored light from the local origin along the local x axis. The light is projected parallel to the x axis from
a point or circle source. It has its maximum intensity within the alpha-angle frustum of a cone and falls to zero at the beta-angle frustum of a
cone. This falloff is controlled by the angle_falloff parameter. (Zero gives the light a sharp edge, higher values mean that the transition is
smoother.) The effect of the light is limited along the axis by the distance1 and distance2 clipping values. The distance_falloff parameter
controls the decrease in intensity depending on the distance. (Zero value means a constant intensity; bigger values are used for stronger falloff.)
GDL transformations affect only the starting point and the direction of the light.
The shadow parameter controls the light’s shadow casting.
0: light casts no shadows
1: light casts shadows

dist1

dist2

beta
alpha

ra
d
iu
s

intensity

3D Shapes

GDL Reference Guide 113

Parameter restriction:
alpha <= beta <= 80°
The following parameter combinations have special meanings:
radius = 0, alpha = 0, beta = 0
A point light, it radiates light in every direction and does not cast any shadows. The shadow and angle_falloff parameters are ignored, the values
shadow = 0, angle_falloff = 0 are supposed.
radius > 0, alpha = 0, beta = 0
A directional light.
Light definition can contain optional additional data definitions after the
ADDITIONAL_DATA keyword. Additional data has a name (namei) and a value (valuei), which can be an expression of any type, even an
array. If a string parameter name ends with the substring "_file", its value is considered to be a file name and will be included in the archive
project.
Different meanings of additional data can be defined and used by ArchiCAD or Add-Ons to ArchiCAD.
See meanings of LightWorks Add-On parameters at http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/11.
Example:
LIGHT 1.0,0.2,0.3, ! RGB
 1, ! shadow on
 1.0, ! radius
 45.0,60.0, ! angle1, angle2
 0.3, ! angle_falloff
 1.0,10.0, ! distance1, distance2
 0.2 ! distance_falloff

http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/11

3D Shapes

114 GDL Reference Guide

The library part dialog box for lights in ArchiCAD and ArchiFM:

Part of the corresponding GDL script:
IF C = 0 GOTO 10
LIGHT G/100*D, G/100*E, G/100*F, ! RGB
...
10:

r = 0, alpha > 0, beta > 0

3D Shapes

GDL Reference Guide 115

r > 0, alpha = 0, beta > 0

r > 0, alpha = 0, beta = 0
Light types using different alpha, beta parameters

3D Shapes

116 GDL Reference Guide

PICTURE
PICTURE expression, a, b, mask

A picture element for photorendering.

A string type expression means a file name, a numeric expression or the index of a picture stored in the library part. A 0 index is a special value
that refers to the preview picture of the library part. Other pictures can only be stored in library parts when saving the project or selected
elements containing pictures as GDL Objects.
Indexed picture reference cannot be used in the MASTER_GDL script when attributes are merged into the current attribute set. The image is
fitted on a rectangle treated as a RECT in any other 3D projection method.
mask = alpha + distortion
alpha: alpha channel control
0: do not use alpha channel; picture is a rectangle.
1: use alpha channel; parts of the picture may be transparent.
distortion: distortion control

0: fit the picture into the given rectangle.
2: fit the picture in the middle of the rectangle using the natural aspect ratio of the picture.
4: fill the rectangle with the picture in a central position using natural aspect ratio of the picture.

3D Shapes

GDL Reference Guide 117

3D TEXT ELEMENTS

TEXT
TEXT d, 0, expression

A 3D representation of the value of a string or numeric type expression in the current style.
See “[SET] STYLE” on page 191 and “DEFINE STYLE” on page 211.
d: thickness of the characters in meters
In the current version of GDL, the second parameter is always zero.
Examples:

DEFINE STYLE "aa" "New York", 3, 7, 0
SET STYLE "aa"
TEXT 0.005, 0, "3D Text"

name = "Grand"
ROTX 90
ROTY -30

3D Shapes

118 GDL Reference Guide

TEXT 0.003, 0, name
ADDX STW (name)/1000
ROTY 60
TEXT 0.003, 0, "Hotel"

Note: For compatibility with the 2D GDL script, character heights are always interpreted in millimeters in DEFINE STYLE statements.

RICHTEXT
RICHTEXT x, y,

height, 0, textblock_name

A 3D repesentation of a previously defined TEXTBLOCK. For more details, see “Textblock” on page 213.
x, y: X-Y coordinates of the richtext location

height: thickness of the characters in meters
textblock_name: the name of a previously defined TEXTBLOCK
In the current version of GDL, the 4th parameter is always zero.

PRIMITIVE ELEMENTS

The primitives of the 3D data structure are VERT, VECT, EDGE, PGON and BODY. The bodies are represented by their surfaces and the
connections between them. The information to execute a 3D cutaway comes from the connection information.
Indexing starts with 1, and a BASE statement or any new body (implicit BASE statement) resets indices to 1. For each edge, the indices of the
adjacent polygons (maximum 2) are stored. Edges’ orientations are defined by the two vertices determined first and second.
Polygons are lists of edges with an orientation including the indices of the edges. These numbers can have a negative prefix. This means that the
given edge is used in the opposite direction. Polygons can include holes. In the list of edges, a zero index indicates a new hole. Holes must not
include other holes. One edge may belong to 0 to 2 polygons. In the case of closed bodies, the polygon’s orientation is correct if the edge has
different prefixes in the edge list of the two polygons.
The normal vectors of the polygons are stored separately. In the case of closed bodies, they point from the inside to the outside of the body. The
orientation of the edge list is counterclockwise (mathematical positive), if you are looking at it from the outside. The orientation of the holes is
opposite to that of the parent polygon. Normal vectors of an open body must point to the same side of the body.
To determine the inside and outside of bodies they must be closed. A simple definition for a closed body is the following: each edge has exactly
two adjacent polygons.
The efficiency of the cutting, hidden line removal or rendering algorithms is lower for open bodies. Each compound three-dimensional element
with regular parameters is a closed body in the internal 3D data structure.
Contour line searching is based on the status bits of edges and on their adjacent polygons. This is automatically set for compound curved
elements but it is up to you to specify these bits correctly in the case of primitive elements.
In the case of a simplified definition (vect = 0 or status < 0 in a PGON) the primitives that are referred to by others must precede their
reference. In this case, the recommended order is:

3D Shapes

GDL Reference Guide 119

 VERT (TEVE)
 EDGE
 (VECT)
 PGON (PIPG)
 COOR
 BODY
Searching for adjacent polygons by the edges is done during the execution of the body statement.
The numbering of VERTs, EDGEs, VECTs and PGONs is relative to the last (explicit or implicit) BASE statement.
Status values are used to store special information about primitives. Each single bit usually has an independent meaning in the status, but there
are some exceptions.
Given values can be added together. Other bit combinations than the ones given below are strictly reserved for internal use. The default for each
status is zero.

VERT
VERT x, y, z

A node in the x-y-z space, defined by three coordinates.

TEVE
TEVE x, y, z, u, v

Extension of the VERT statement including a texture coordinate definition. Can be used instead of the VERT statement if user-defined texture
coordinates are required instead of the automatic texture wrapping (see “COOR” on page 121 statement).
x, y, z: coordinates of a node
u, v: texture coordinates of the node
(u, v) coordinates for each vertex of the current body must be specified and each vertex should have only one texture coordinate. If

VERT and TEVE statements are mixed inside a body definition, (u, v) coordinates are ineffective.
Note: The (u, v) texture coordinates are only effective in photorenderings, and not for vectorial fill mapping.

VECT
VECT x, y, z

Definition of the normal vector of a polygon by three coordinates. In case of a simplified definition (vect=0 in a PGON), these statements can
be omitted.

3D Shapes

120 GDL Reference Guide

EDGE
EDGE vert1, vert2, pgon1, pgon2, status

Definition of an edge.
vert1, vert2: index of the endpoints. The vert1 and vert2 indices must be different and referenced to previously defined VERTs.
pgon1, pgon2: indices of the neighboring polygons. Zero and negative values have special meanings:
0: sidemost or standalone edge.
< 0: possible neighbors will be searched for.
Status bits:
1: invisible edge.
2: edge of a curved surface.
Reserved status bits for future use:
4: first edge of a curved surface (only together with 2).
8: last edge of a curved surface (only together with 2).
16: the edge is an arc segment.
32: first segment of an arc (only together with 16).
64: last segment of an arc (only together with 16).

PGON
PGON n, vect, status, edge1, edge2, ... edgen

Polygon definition.
n: number of edges in the edge list.
vect: index of the normal vector. It must refer to a previously defined VECT.

Note: If vect = 0, the program will calculate the normal vector during the analysis.
The edge1, edge2, ... edgen indices must refer to previously defined EDGEs. A zero value means the beginning or the end of a hole definition.
A negative index changes the direction of the stored normal vector or edge to the opposite in the polygon. (The stored vector or edge does not
change; other polygons can refer to it using the original orientation with a positive index.)

3D Shapes

GDL Reference Guide 121

Status bits:
1: invisible polygon.
2: polygon of a curved surface.
16: concave polygon.
32: polygon with hole(s).
64: hole(s) are convex (only together with 32).
Reserved status bits for future use:
4: first polygon of a curved surface (only together with 2).
8: last polygon of a curved surface (only together with 2).
If the status value is negative, the engine will calculate the status of the polygon (like concave polygon or polygon with hole).
n = 0 is allowed for special purposes.

PIPG
PIPG expression, a, b, mask, n, vect,

status,
edge1, edge2, ... edgen

Picture polygon definition. The first four parameters are the same as in the PICTURE element; the remaining ones are the same as in the
PGON element.

COOR
COOR wrap, vert1, vert2, vert3, vert4

Local coordinate system of a BODY for the fill and texture mapping.
wrap: wrapping mode + projection type
Wrapping modes:
1: planar
2: box
3: cylindrical
4: spherical
5: same as the cylindrical fill mapping, but in rendering the top and the bottom surface will get a circular mapping

3D Shapes

122 GDL Reference Guide

Projection types:
256: the fill always starts at the origin of the local coordinate system.
1024: quadratic texture projection (recommended).
2048: linear texture projection based on the average distance.
4096: linear texture projection based on normal triangulation.

Note: The last three values are only effective with custom texture coordinate definitions (see “TEVE” on page 119).
vert1: index of a VERT, representing the origin of the local coordinate system.
vert2, vert3, vert4: indices of VERTs defining the three coordinate axes
Use a minus sign (-) before VERT indices if they are used only for defining the local coordinate system.

3D Shapes

GDL Reference Guide 123

Example for custom texture axes:
CSLAB_ "Face brick", "Face brick", "Face brick",

4, 0.5,
0, 0, 0, 15,
1, 0, 0, 15,
1, 1, 1, 15,
0, 1, 1, 15

BASE
VERT 1, 0, 0 !#1
VERT 1, 1, 1 !#2
VERT 0, 0, 0 !#3
VERT 1, 0, 1 !#4
COOR 2, -1, -2,-3, -4
BODY 1

X

Y

X'

Y'

Z

Z'

3D Shapes

124 GDL Reference Guide

BODY
BODY status

Composes a body defined with the above primitives.
Status bits:
1: closed body.
2: body including curved surface(s).
4: surface model: when the body is cut, no surface originates on the cutting plane.
32: body always casts shadow independently from automatic preselection algorithm.
64: body never casts shadow.
If neither 32 nor 64 are set, the automatic shadow preselection is performed.
See “SHADOW” on page 194.
If the status value is negative, the engine will calculate the status of the body.
Example:

1: Complete description
VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, 1, 3, 0 !#1

1

3

Y

7

X

Z

5 8

4

6

2

3D Shapes

GDL Reference Guide 125

EDGE 2, 3, 1, 4, 0 !#2
EDGE 3, 4, 1, 5, 0 !#3
EDGE 4, 1, 1, 6, 0 !#4
EDGE 5, 6, 2, 3, 0 !#5
EDGE 6, 7, 2, 4, 0 !#6
EDGE 7, 8, 2, 5, 0 !#7
EDGE 8, 5, 2, 6, 0 !#8
EDGE 1, 5, 6, 3, 0 !#9
EDGE 2, 6, 3, 4, 0 !#10
EDGE 3, 7, 4, 5, 0 !#11
EDGE 4, 8, 5, 6, 0 !#12
VECT 1.0, 0.0, 0.0 !#1
VECT 0.0, 1.0, 0.0 !#2
VECT 0.0, 0.0, 1.0 !#3
PGON 4, -3, 0, -1, -4, -3, -2 !#1 !VERT1,2,3,4
PGON 4, 3, 0, 5, 6, 7, 8 !#2 !VERT5,6,7,8
PGON 4, -2, 0, 1, 10, -5, -9 !#3 !VERT1,2,5,6
PGON 4, 1, 0, 2, 11, -6, -10 !#4 !VERT2,3,6,7
PGON 4, 2, 0, 3, 12, -7, -11 !#5 !VERT3,4,7,8
PGON 4, -1, 0, 4, 9, -8, -12 !#6 !VERT1,4,5,8
BODY 1 !CUBE
2: (no direct reference to the polygons or the vectors, they will be calculated)
VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, -1, -1, 0 !#1
EDGE 2, 3, -1, -1, 0 !#2
EDGE 3, 4, -1, -1, 0 !#3
EDGE 4, 1, -1, -1, 0 !#4
EDGE 5, 6, -1, -1, 0 !#5
EDGE 6, 7, -1, -1, 0 !#6
EDGE 7, 8, -1, -1, 0 !#7
EDGE 8, 5, -1, -1, 0 !#8
EDGE 1, 5, -1, -1, 0 !#9
EDGE 2, 6, -1, -1, 0 !#10
EDGE 3, 7, -1, -1, 0 !#11
EDGE 4, 8, -1, -1, 0 !#12
PGON 4, 0, -1, -1, -4, -3, -2 !#1

3D Shapes

126 GDL Reference Guide

 !VERT1,2,3,4
PGON 4, 0, -1, 5, 6, 7, 8 !#2

!VERT5,6,7,8
PGON 4, 0, -1, 1, 10, -5, -9 !#3

!VERT1,2,5,6
PGON 4, 0, -1, 2, 11, -6, -10 !#4

!VERT2,3,6,7
PGON 4, 0, -1, 3, 12, -7, -11 !#5

!VERT3,4,7,8
PGON 4, 0, -1, 4, 9, -8, -12 !#6

!VERT1,4,5,8
BODY -1 !CUBE

BASE
BASE

Resets counters for low-level geometric elements (VERT, TEVE, VECT, EDGE, PGON and PIPG) statements. Implicitly issued after every
compound element definition.

CUTTING IN 3D

CUTPLANE
CUTPLANE [x [, y,[z [, side [, status]]]]]

[statement1 ... statementn]
CUTEND

CUTPLANE{3}[x [, y,[z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

or
CUTPLANE{2} angle [, status]

[statement1 ... statementn]
CUTEND

Creates a cutting plane and removes the cut parts of enclosed shapes. CUTPLANE may have a different number of parameters.
If CUTPLANE has the following number of parameters:
0: x-y plane;
1: cutting plane goes across x axis, angle is between cutting plane and x-y plane;

3D Shapes

GDL Reference Guide 127

2: cutting plane is parallel to z axis, crosses x axis and y axis at the given values;
3: cutting plane crosses the x, y and z axes at the given values;
4: the first three parameters are as above, with the addition of the side value as follows:
side = 0: removes parts above cutting plane (default);

side = 1: removes parts below cutting plane; in case of x-y, x-z, y-z, removes the parts in the negative direction of the axis.
The cut (without the side parameter) removes parts above the cutting plane. If the first three parameters define the x-y, x-z or y-z plane (for
example, 1.0, 1.0, 0.0 defines the x-y plane), the parts in the positive direction of the third axis are removed.
Any number of statements can be added between CUTPLANE and CUTEND. It is also possible to include CUTPLANEs in macros.
CUTPLANE parameters refer to the current coordinate system.
Transformations between CUTPLANE and CUTEND have no effect on this very cutting plane, but any successive CUTPLANEs will be
transformed. Therefore, it is recommended to use as many transformations to set up the CUTPLANE as necessary, then delete these
transformations before you define the shapes to cut.
Pairs of CUTPLANE-CUTEND commands can be nested, even within loops. If the final CUTEND is missing, its corresponding CUTPLANE
will be effective on all shapes until the end of the script.
CUTPLANEs in macros affect shapes in the macro only, even if CUTEND is missing.
If a macro is called between CUTPLANE and CUTEND, the shapes in the macro will be cut.
Current material, pen and fill settings are effective on the cut surfaces.

Note 1: If CUTPLANE is not closed with CUTEND, all shapes may be entirely removed. That’s why you always get a warning message
about missing CUTENDs.
If transformations used only to position the CUTPLANE are not removed, you may think that the CUTPLANE is at a wrong position when,
in reality, it is the shapes that have moved away.
Note 2: If you use CUTPLANE{2} with more than two parameters, then this will act like CUTPLANE.
Note 3: Prefer using CUTPLANE{3} instead of CUTPLANE. If you use CUTPLANE with 5 parameters, then the 4th parameter will be
omitted. For CUTPLANE{3}, this parameter has effect independently from the 5th parameter.

3D Shapes

128 GDL Reference Guide

Examples:

CUTPLANE 2, 2, 4
CUTPLANE -2, 2, 4
CUTPLANE -2, -2, 4
CUTPLANE 2, -2, 4

ADD -1, -1, 0
BRICK 2, 2, 4
DEL 1

CUTEND
CUTEND
CUTEND
CUTEND

CUTPLANE CUTPLANE 1, 1, 0, 1
 SPHERE 2 SPHERE 2
CUTEND CUTEND

3D Shapes

GDL Reference Guide 129

CUTPLANE 1.8, 1.8, CUTPLANE 1.8, 1.8,
 1.8 1.8, 1
 SPHERE 2 SPHERE 2
CUTEND CUTEND

CUTPLANE 60 CUTPLANE -120
 BRICK 2, 2, 2 BRICK 2, 2, 2
CUTEND CUTEND

CUTPOLY
CUTPOLY n,

x1, y1, ... xn, yn
[, x, y, z]
[statement1
statement2
...
statementn]
CUTEND

3D Shapes

130 GDL Reference Guide

Similarly to the CUTPLANE command, parameters of CUTPOLY refer to the current coordinate system. The polygon cannot be
self-intersecting. The direction of cutting is the Z axis or an optional (x, y, z) vector can be specified.
The parameters define an infinite “tube”: the polygon is the cross-section of the tube, the direction of cutting is the direction of the tube.
Everything inside the tube is removed.

3D Shapes

GDL Reference Guide 131

Examples:

ROTX 90
MULZ -1
CUTPOLY 3,

0.5, 1,
2, 2,
3.5, 1,
-1.8, 0, 1

 DEL 1
 BPRISM_ "Red brick", "Red brick", "Face brick",
 4, 0.9, 7,
 0.0, 0.0, 15,
 6.0, 0.0, 15,
 6.0, 3.0, 15,
 0.0, 3.0, 15
CUTEND

3D Shapes

132 GDL Reference Guide

A=1.0
D=0.1
CUTPOLY 4,
 D, D,
 A-D, D,
 A-D, A-D,
 D, A-D
ROTX 90
CUTPOLY 4,
 D, D,
 A-D, D,
 A-D, A-D,
 D, A-D
 DEL 1
ROTY 90
CUTPOLY 4,
 D, D,
 A-D, D,
 A-D, A-D,
 D, A-D
 DEL 1
 BLOCK A, A, A
CUTEND
CUTEND
CUTEND

3D Shapes

GDL Reference Guide 133

ROTX 90
FOR I=1 TO 3
 FOR J=1 TO 5
 CUTPOLY 4,
 0, 0, 1, 0,
 1, 1, 0, 1
 ADDX 1.2
 NEXT J
 DEL 5
 ADDY 1.2
NEXT I
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 6.2, 3.8, 1
FOR K=1 TO 15
 CUTEND
NEXT K
DEL TOP

3D Shapes

134 GDL Reference Guide

CUTPOLYA
CUTPOLYA n, status, d,

x1, y1, mask1, ... xn, yn, maskn [,
x, y, z]
[statement1
statement2
...
statementn]

CUTEND
Similar to the CUTPOLY definition, but with the possibility to control the visibility of the edges of the generated polygons. The cutting form is
a half-infinite tube with the defined polygonal cross-section. If the end of the cutting form hangs down into the body, it will cut out the
corresponding area.

status: controls the treatment of the generated cut polygons
1: use the attributes of the body for the generated polygons and edges.
2: generated cut polygons will be treated as normal polygons.
d: the distance between the local origin and the end of the half-infinite tube.
d = 0 means a cut with an infinite tube.
maski: similar to the PRISM_ statement.

i

Y

X

Z

jj

j

i+1
1

2 3

3D Shapes

GDL Reference Guide 135

maski = j1 + 2 * j2 + 4 * j3 + 64 * j7
Example:

ROTX 90
FOR I=1 TO 3
 FOR J=1 TO 5
 CUTPOLYA 6, 1, 0,
 1, 0.15, 5,
 0.15, 0.15, 900,
 0, 90, 4007,
 0, 0.85, 5,
 0.85, 0.85, 900,
 0, 90, 4007
 ADDX 1
 NEXT J
 DEL 5
 ADDY 1
NEXT I
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 5.4, 3.4, 0.5
FOR K=1 TO 15
 CUTEND
NEXT K
DEL TOP

3D Shapes

136 GDL Reference Guide

CUTSHAPE
CUTSHAPE d [, status]
[statement1 statement2 ... statementn]

CUTEND
status: controls the treatment of the generated cut polygons. If not specified (for compatibility reasons) the default value is 3.
status = j1 + 2*j2
j1: use the attributes of the body for the generated polygons and edges
j2: generated cut polygons will be treated as normal polygons

FOR I = 1 TO 5
 ADDX 0.4 * I
 ADDZ 2.5
 CUTSHAPE 0.4
 DEL 2
 ADDX 0.4
NEXT I
DEL TOP
BRICK 4.4, 0.5, 4
FOR I = 1 TO 5
 CUTEND
NEXT I

3D Shapes

GDL Reference Guide 137

CUTFORM
CUTFORM n, method, status,

rx, ry, rz, d,
x1, y1, mask1,
...
xn, yn, maskn

Similar to the CUTPOLYA definition, but with the possibility to control the form and extent of the cutting body.
method: Controls the form of the cutting body
1: prism shaped
2: pyramidal
3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry is

ignored.)

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8
j1: use the attributes of the body for the generated polygons and edges
j2: generated cut polygons will be treated as normal polygons
j4, j5: define the limit of the cut:
j4 = 0 and j5 = 0:finite cut
j4 = 0 and j5 = 1:semi-infinite cut
j4 = 1 and j5 = 1:infinite cut
j6: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM

command)
j7 : edges generated by the bottom of the cutting body will be invisible
j8 : edges generated by the top of the cutting body will be invisible

3D Shapes

138 GDL Reference Guide

rx, ry, rz: defines the direction of cutting if the cutting form is prism-shaped, or the top of the pyramid if the method of cutting is
pyramidal

d: defines the distance along rx, ry, rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then
the start of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction
defined by rx, ry, rz

If the cut is semi-infinite, then the start of the cutting body will be at a distance of d along the direction defined by rx, ry, rz, and the direction of
the semi-infite cut will be in the opposite direction defined by rx, ry, rz.
mask: Defines the visibilty of the edges of the cutting body
maski = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 64*j7
j1: the polygon will create a visible edge upon entry into the body being cut
j2: the lengthwise edge of the cutting form will be visible
j3: polygon will create a visible edge upon exiting the body being cut
j4: the bottom edge of the cutting form will be visible
j5: the top edge of the cutting form will be visible
j7: controls the viewpont dependent visibility of the lengthwise edge

SOLID GEOMETRY COMMANDS
GDL is capable of performing specialized 3D operations between solids represented by groups. These operations can be one of the following:
• ADDGROUP: forming the Boolean union of two solids;

• SUBGROUP: forming the Boolean difference of two solids;

3D Shapes

GDL Reference Guide 139

• ISECTGROUP: forming the Boolean intersection of two solids;

• ISECTLINES: calculating the intersection lines of two solids;

• SWEEPGROUP: sweeping a solid along a vector.

A GDL solid is composed of one or more lumps that appear as separated bodies in the model. A lump has exactly one outer shell and may
contain voids. (Voids can be described as “negative” inner shells inside a lump.) The solid in the drawing below is composed of two lumps in
such a way that one of them contains a void.

3D Shapes

140 GDL Reference Guide

GDL bodies such as BLOCK, SPHERE, etc., appear as outer shells in groups. By means of the following construction the user is capable of
putting more than one shell in a solid (note the BODY -1 statement):
GROUP "myGroup"
 BLOCK 1,1,1
 BODY –1
 ADDX 1
 BLOCK 1,1,1
ENDGROUP
The above solid contains two lumps; each of them is composed of one shell. Voids can be defined by means of primitives, or can occur as a
result of a Boolean difference (e.g. subtracting a small cube from the middle of a big one).
See also “Primitive Elements” on page 118.
Although group operations are intended to work with solid objects, they can be applied to surfaces, wireframes or hybrid models, too. (Hybrid
models are basically surfaces that may contain edges without neighboring faces.) The result of the operations on such models are summarized in
the following tables:
Union (base » tool)

Difference (base\tool)

solid base surface base wireframe base hybrid base

solid tool solid result surface result (merging) wireframe result
(merging)

hybrid result
(merging)

surface tool surface result (merging) surface result (merging) hybrid result (merging) hybrid result
(merging)

wireframe tool wireframe result
(merging)

hybrid result (merging) wireframe result
(merging)

hybrid result
(merging)

hybrid tool hybrid result (merging) hybrid result (merging) hybrid result (merging) hybrid result
(merging)

solid base surface base wireframe base hybrid base

solid tool solid result surface result wireframe result hybrid result
surface tool solid base (no effect) surface base (no effect) wireframe base (no effect) hybrid base (no effect)
wireframe tool solid base (no effect) surface base (no effect) wireframe base (no effect) hybrid base (no effect)
hybrid tool solid base (no effect) surface base (no effect) wireframe base (no effect) hybrid base (no effect)

3D Shapes

GDL Reference Guide 141

Intersection (base « tool)

Intersection lines (base « tool)

Sweeping

Surfaces can be explicitly generated by using the MODEL SURFACE command, or implicitly by leaving out non-neighboring face polygons
from the model. Wireframes are produced either by using the MODEL WIRE statement or by defining objects without face polygons. Hybrid
models can only be generated indirectly by leaving out neighboring face polygons from the model.
In the majority of the cases the required model is solid. GDL bodies appear as shells in group definitions, so in order to achieve fast and reliable
operation, the geometric correctness of the generated shells is a critical issue. Handling degenerated objects loads the GDL engine and causes
the desired operation to take more time to complete. The main rule to be considered regarding the efficient use of GDL group operations can
be summarized as follows: model by conforming to existing physical presence of spatial objects. In practice this can be expressed by the following guidelines:
• Avoid self-intersecting objects.
• Avoid self-touching objects (apply small gaps).
• Avoid zero-sized portions of objects (apply small thickness).

According to the above, these rules are to be followed for shells (defined by bodies), not for solids (defined by groups). (The solid produced by
the script in the Group construction above is modeled properly, since the constituent shells touch each other but the shells, themselves, are
geometrically correct.)

solid base surface base wireframe base hybrid base

solid tool solid result surface result wireframe result hybrid result
surface tool surface result empty result empty result empty result
wireframe tool wireframe result empty result empty result empty result
hybrid tool hybrid result empty result empty result empty result

solid base surface base wireframe base hybrid base

solid tool wireframe result wireframe result empty result wireframe result
surface tool wireframe result empty result empty result empty result
wireframe tool empty result empty result empty result empty result
hybrid tool wireframe result empty result empty result empty result

solid surface wireframe hybrid

valid result surface base (no effect) wireframe base (no effect) hybrid base (no effect)

3D Shapes

142 GDL Reference Guide

GROUP
GROUP "name"

Beginning of a group definition. All bodies until the next ENDGROUP statement will be part of the “name” group. Groups are not actually
generated (placed), they can be used in group operations or placed explicitly using the PLACEGROUP command. Group definitions cannot be
nested, but macro calls containing group definitions and PLACEGROUP commands using other groups can be included.
Group names must be unique inside the current script. Transformations, cutplanes outside the group definition have no effect on the group
parts; transformations, cutplanes used inside have no effect on the bodies outside the definition. Group definitions are transparent to attribute
DEFINEs and SETs (pens, materials, fills); attributes defined/set before the definition and those defined/set inside the definition are all
effective.

ENDGROUP
ENDGROUP

End of a group definition.

ADDGROUP
ADDGROUP (g_expr1, g_expr2)

SUBGROUP
SUBGROUP (g_expr1, g_expr2)

ISECTGROUP
ISECTGROUP (g_expr1, g_expr2)

ISECTLINES
ISECTLINES (g_expr1, g_expr2)

Group operations: addition, substraction, intersection, intersection lines. The return value is a new group, which can be placed using the
PLACEGROUP command, stored in a variable or used as a parameter in another group operation. Group operations can be performed
between previously defined groups or groups result from any other group operation. g_expr1, g_expr2 are group type expressions. Group type
expressions are either group names (string expressions) or group type variables or any combination of these in operations which result in
groups.

3D Shapes

GDL Reference Guide 143

PLACEGROUP
PLACEGROUP g_expr

Placing a group is the operation in which bodies are actually generated. Cutplanes and transformations are effective, the group expression is
evaluated and the resulting bodies are stored in the 3D data structure.

KILLGROUP
KILLGROUP g_expr

Clears the bodies of the specified group from the memory. After a KILLGROUP operation the group becomes empty. Clearing is executed
automatically at the end of the interpretation or when returning from macro calls. For performance reasons this command should be used when
a group is no longer needed.
Example:

GROUP "box"
 BRICK 1, 1, 1
ENDGROUP
GROUP "sphere"
 ADDZ 1
 SPHERE 0.45
 DEL 1
ENDGROUP
GROUP "semisphere"
 ELLIPS 0.45, 0.45

3D Shapes

144 GDL Reference Guide

ENDGROUP
GROUP "brick"
 ADD -0.35, -0.35,0
 BRICK 0.70, 0.70, 0.35
 DEL 1
ENDGROUP
! Substracting the "sphere" from the "box"
result_1=SUBGROUP("box","sphere")
! Intersecting the "semisphere" and the "brick"
result_2=ISECTGROUP("semisphere","brick")
! Adding the generated result_3=ADDGROUP(result_1,result_2)
PLACEGROUP result_3
KILLGROUP "box"
KILLGROUP "sphere"
KILLGROUP "semisphere"
KILLGROUP "brick"

3D Shapes

GDL Reference Guide 145

SWEEPGROUP
SWEEPGROUP (g_expr, x, y, z)

Returns a group that is created by sweeping the group parameter along the given direction. The command works for solid models only.
SWEEPGROUP (2) (g_expr, x, y, z)

The difference between SWEEPGROUP and SWEEPGROUP (2) is that in the former case the actual transformation matrix is applied again to
the direction vector of the sweeping operation with respect to the current coordinate system. (in the case of SWEEPGROUP, the current
transformation is applied to the direction vector twice with respect to the global coordinate system.)
Example:

GROUP "a"
 SPHERE 1
ENDGROUP
PLACEGROUP SWEEPGROUP ("a", 2, 0, 0)

BINARY 3D

BINARY

BINARY mode [, section]

Special command to include inline binary objects into a GDL macro. A set of vertices, vectors, edges, polygons, bodies and materials is read
from a special section of the library part file. These are transformed according to the current transformations and merged into the 3D model.
The data contained in the binary section is not editable by the user.
mode: defines pencolor and material attribute definition usage
0: the current PEN and MATERIAL settings are in effect.
1: the current PEN and MATERIAL settings have no effect. The library part will be shown with the stored colors and material

definitions. Surface appearance is constant.
2: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by current settings.

3D Shapes

146 GDL Reference Guide

3: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by the stored default attributes.
section: index of the binary part, from 1 to 16
By using 0 for the section index, you can refer simultaneously to all the existing binary parts.
Only sections with an index value of 1 can be saved from within GDL, BINARY commands without the section argument will also refer to this.
Other section indexes can be used by third party tools.
If you open files with a different data structure (e.g., DXF or ZOOM) their 3D description will be converted into binary format.
You can save a library part in binary format from the main Library Part editing window through the Save as... command. If the Save in binary
format checkbox is marked in the Save as... dialog box, the GDL text of the current library part will be replaced with a binary description.

Hint: Saving the 3D model after a 3D cutaway operation in binary format will save the truncated model. This way, you can create cut shapes.
You can only save your library part in binary format if you have already generated its 3D model.
By replacing the GDL description of your library part with a binary description you can considerably reduce the 3D conversion time of the item.
On the other hand, the binary 3D description is not parametric and takes more disk space than an algorithmic GDL script.

GDL Reference Guide 147

2D SHAPES
This chapter presents the commands used for generating shapes in 2D from simple forms such as lines and arcs to complex polygons and splines, and the definition of text
elements in 2D. It also covers the way binary data is handled in 2D and the projection of the shape created by a 3D script into the 2D view, thereby ensuring coherence
between the 3D and 2D appearance of objects. Further commands allow users to place graphic elements into element lists created for calculations.

DRAWING ELEMENTS

HOTSPOT2
HOTSPOT2 x, y [, unID [, paramReference, flags][, displayParam]]

unID is the unique identifier of the hotspot in the 2D Script. Useful if you have a variable number of hotspots.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can

be passed as well.
See “Graphical Editing” on page 167 for information on using HOTSPOT2.

(x, y)

Y

X

2D Shapes

148 GDL Reference Guide

LINE2
LINE2 x1, y1, x2, y2

Line definition between two points.

RECT2
RECT2 x1, y1, x2, y2

Rectangle definition by two nodes.

Y

(x1, y1)

X

(x2, y2)

Y

(x1, y1)

X

(x2, y2)

2D Shapes

GDL Reference Guide 149

POLY2
POLY2 n, frame_fill, x1, y1, ... xn, yn

An open or closed polygon with n nodes.

Restriction of parameters:
n >= 2
frame_fill = j1 + 2*j2 + 4*j3
where j1, j2, j3 can be 0 or 1.
j1 (1): contour only
j2 (2): fill only
j3 (4): close an open polygon

n

1
2

Y

X

2D Shapes

150 GDL Reference Guide

POLY2_
POLY2_ n, frame_fill, x1, y1, s1, ... xn, yn, sn

Similar to the normal POLY2 statement, but any of the edges can be omitted. If si = 0, the edge starting from the (xi,yi) apex will be
omitted. If si = 1, the vertex should be shown. si = -1 is used to define holes directly. You can also define arcs and segments in the polyline
using additional status code values.
Restriction of parameters:
n >= 2
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 32*j6 + 64*j7
where j1, j2, j3 can be 0 or 1.
j1 (1): contour only
j2 (2): fill only
j3 (4): close an open polygon
j4 (8): local fill orientation
j6: fill is cut fill (default is drafting fill)
j7: fill is cover fill (only if j6 = 0, default is drafting fill)
Status values:
s = j1 + 16*j5 + 32*j6
where j1, j5, j6 can be 0 or 1.
j1 (1): next segment is visible
j5 (16): next segment is inner line (if 0, generic line)
j6 (32): next segment is contour line (effective only if j5 is not set)
-1: end of a contour

n

1
2

Y

X

2D Shapes

GDL Reference Guide 151

Default line property for POLY2_ lines is 0 (generic line), LINE_PROPERTY statement has no effect on POLY2_ edges.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.

POLY2_A
POLY2_A n, frame_fill, fill_pen,

x1, y1, s1, ..., xn, yn, sn

POLY2_B
POLY2_B n, frame_fill, fill_pen,

fill_background_pen,
x1, y1, s1, ..., xn, yn, sn

Advanced versions of the POLY2_ command, with additional parameters: the fill pen and the fill background pen. All other parameters are
similar to those described at the POLY2_ statement. Additional status codes allow you to create segments and arcs in the planar polyline using
special constraints.
See “Additional Status Codes” on page 175 for details.

POLY2_B{2}
POLY2_B{2} n, frame_fill, fill_pen,

fill_background_pen,
fillOrigoX, fillOrigoY,
fillAngle,
x1, y1, s1, ..., xn, yn, sn

Advanced version of the POLY2_B command where the fill pen, background pen, origin and direction can be defined.
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 +64*j7
where j1, j2, j3, j4 j5, j6, j7 can be 0 or 1.
j1 (1): contour only
j2 (2): fill only
j3 (4): close an open polygon
j4 (8): local fill orientation
j5 (16): global fill origin (effective only if j4 is set)
j6 (32): fill in cut category (distinctive with j7, drafting category if none is set)
j7 (64): fill in cover category (distinctive with j6, drafting category if none is set)
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.

2D Shapes

152 GDL Reference Guide

POLY2_B{3}
POLY2_B{3} n, frame_fill, fill_pen,

fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy, x1, y1, s1, ..., xn, yn, sn

Advanced version of the POLY2_ command, where the orientation of the fill can be defined using a matrix.
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 +128*j8
where j1, j2, j3, j4, j5, j6, j7, j8 can be 0 or 1.
j1-j7: similar as for previous POLY2_ commands
j8 (128): use sloped fill
mxx, mxy, myx, myy: if j8 is set, this matrix defines the orientation of the fill
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See “Additional Status Codes” on page 175 for details.

POLY2_B{4}
POLY2_B{4} n, frame_fill, fill_pen,

fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
gradientInnerRadius,
x1, y1, s1, ..., xn, yn, sn

Advanced version of POLY2_ B{3}, where the inner radius of radial gradient fill can be set.
gradientInnerRadius: inner radius of the gradient in case radial gradient fill is selected for the polygon

POLY2_B{5}
POLY2_B{5} n, frame_fill, fillcategory, distortion_flags,

fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1, y1, s1, ..., xn, yn, sn

Advanced version of POLY2_ B{4}, where fill distortion can be controlled in an enhanced way.
frame_fill = j1 + 2*j2 + 4*j3
where j1, j2, j3 can be 0 or 1.

2D Shapes

GDL Reference Guide 153

j1 (1): show contour
j2 (2): show fill
j3 (4): close an open polygon
fillcategory: 0 - Draft 1 - Cut 2- Cover
distortion_flags = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7
where each ji flag can be 0 or 1. The valid value for distortion_flags is between 0 and 127. Don't use value out of this range.
j1 (1): the fill origin's X coordinate is the global origin's X coordinate, meaningful only when j4 is set.
The fillOrigo is the projected origo (0,0) on the line of the (mxx, mxy) vector.
j2 (2): the fill origin's Y coordinate is the global origin's Y coordinate, meaningful only when j4 is set.
The fillOrigo is the projected origo (0,0) on the line of the (myx, myy) vector.
j3 (4): create circular distortion using the innerRadius parameter
j4 (8): use local orientation, use the distortion matrix (mij parameters)
j5 (16): (effective for symbol fills only) reset the pattern's X size to the defined X vector's length (mxx, mxy)
j6 (32): (effective for symbol fills only) reset the pattern's Y size to the defined Y vector's length (myx, myy)
j7 (64): (effective for symbol fills only) keep proportion of symbol fill pattern; effective only if one of j5 and j6 is set
innerRadius: radius for circular fill distortion; the origin of the base circle will be placed on the Y fill axis in the (0, -innerRadius) position

2D Shapes

154 GDL Reference Guide

ARC2
ARC2 x, y, r, alpha, beta

An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r.
Alpha and beta are in degrees.

CIRCLE2
CIRCLE2 x, y, r

A circle with its center at (x, y), with a radius of r.

(x, y)

beta

alpha

X

Y
r

(x, y)
YY

X

r

2D Shapes

GDL Reference Guide 155

SPLINE2
SPLINE2 n, status, x1, y1,

angle1, …, xn, yn, anglen

Restriction:
n >= 2
Spline, with n control points. The tangent of the spline in the control point (xi, yi) is defined by anglei, the angle with the x axis in degrees.
Status values:
0: default
1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline.
2: automatically smoothed spline; the angle parameter value of the nodes between the first and the last node is not used when generating the
spline. An internal autosmoothing algorithm is used.

(x ,y)1 n

angle i

i
i i

X

Y

2D Shapes

156 GDL Reference Guide

Examples:
SPLINE2 5, 2,

0, 0, 60,
1, 2, 30,
1.5, 1.5, -30,
3, 4, 45,
4, 3, -45

n = 5
FOR I = 1 TO n
 SPLINE2 4, 0,

0.0, 2.0, 135.0,
-1.0, 1.8, 240.0,
-1.0, 1.0, 290.0,
0.0, 0.0, 45.0

 MUL2 -1.0, 1.0
 SPLINE2 4, 0,

0.0, 2.0, 135.0,
-1.0, 1.8, 240.0,
-1.0, 1.0, 290.0,
0.0, 0.0, 45.0

 DEL 1
 SPLINE2 4, 0,

0.0, 2.0, 100.0,
0.0, 2.5, 0.0,
0.0, 2.4, 270.0,
0.0, 2.0, 270.0

 ADD2 2.5, 0
NEXT I

2D Shapes

GDL Reference Guide 157

SPLINE2A
SPLINE2A n, status, x1, y1, angle1, length_previous1, length_next1,

...
xn, yn, anglen, length_previousn,
length_nextn

An extension of the SPLINE2 statement (Bézier spline), used mainly in automatic 2D script generation because of its complexity.
For more details, see “Lines / Drawing Splines” in the Documentation chapter of ArchiCAD Help.
Status codes:
0: default
1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline
2: Automatically smoothed spline; the angle, length_previous

i
 and length_next

i
 parameter values of the nodes between the first and the last

node are not used when generating the spline. An internal autosmoothing algorithm is used.
xi, yi: control point coordinates
length_previousi, length_nexti: tangent lengths for the previous and the next control points
anglei: tangent direction angle

1 n

angle i

i
i i

X

Y (x ,y)

le
ng

th
_p

re
vi

ou
s i

i

le
ng

th
_n

ex
t

2D Shapes

158 GDL Reference Guide

Example:

SPLINE2A 9, 2,
0.0, 0.0, 0.0, 0.0, 0.0,
0.7, 1.5, 15, 0.9, 1.0,
1.9, 0.8, 72, 0.8, 0.3,
1.9, 1.8, 100, 0.3, 0.4,
1.8, 3.1, 85, 0.4, 0.5,
2.4, 4.1, 352, 0.4, 0.4,
3.5, 3.3, 338, 0.4, 0.4,
4.7, 3.7, 36, 0.4, 0.8,
 6.0, 4.6, 0, 0.0, 0.0

PICTURE2
PICTURE2 expression, a, b, mask

PICTURE2{2}
PICTURE2{2} expression, a, b, mask

Can be used in 2D similarly to the PICTURE command in 3D. Unlike in 3D, the mask values have no effect on 2D pictures.
A string type expression means a file name, a numerical expression means an index of a picture stored in the library part. A 0 index is a special
value, it refers to the preview picture of the library part. For PICTURE2{2} mask = 1 means that exact white colored pixels are transparent.
Other pictures can only be stored in library parts when saving the project or selected elements containing pictures as GDL objects.

2D Shapes

GDL Reference Guide 159

TEXT ELEMENT

TEXT2
TEXT2 x, y, expression

The value of the calculated numerical or string type expression is written in the set style at the x, y coordinates.
See also commands “[SET] STYLE” on page 191 and “DEFINE STYLE” on page 211.

RICHTEXT2
RICHTEXT2 x, y, textblock_name

Place a previously defined TEXTBLOCK.
For more details, see “Textblock” on page 213.
x, y: X-Y coordinates of the richtext location
textblock_name: the name of a previously defined TEXTBLOCK

Y

X

ArchiCAD
(x,y)

2D Shapes

160 GDL Reference Guide

BINARY 2D

FRAGMENT2
FRAGMENT2 fragment_index,

use_current_attributes_flag

The fragment with the given index is inserted into the 2D Full View with the current transformations.
use_current_attributes_flag: defines whether or not the current attributes will be used
0: the fragment appears with the color, line type and fill type defined for it.
1: the current settings of the script are used instead of the color, line type and fill type of the fragment.

FRAGMENT2
FRAGMENT2 ALL,use_current_attributes_flag

All the fragments are inserted into the 2D Full View with the current transformations.
use_current_attributes_flag: defines whether or not the current attributes will be used.
0: the fragments appears with the color, line type and fill type defined for them.
1: the current settings of the script are used instead of the color, line type and fill type of the fragments.

3D PROJECTIONS IN 2D

PROJECT2
PROJECT2 projection_code, angle, method

2D Shapes

GDL Reference Guide 161

PROJECT2{2}
PROJECT2{2} projection_code, angle,method [,backgroundColor, fillOrigoX,

fillOrigoY, filldirection]

Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The 2nd version
PROJECT2{2}, together with a previous SET FILL command, allows the user to control the fill background, origin and direction of the
resulting drawing from the 2D script.
projection_code: the type of projection
3: Top view
4: Side view
6: Frontal axonometry
7: Isometric axonometry
8: Monometric axonometry
9: Dimetric axonometry
-3: Bottom view
-6: Frontal bottom view
-7: Isometric bottom view
-8: Monometric bottom view
-9: Dimetric bottom view
angle: the azimuth angle set in the 3D Projection Settings dialog box.
method: the chosen imaging method
1: wireframe
2: hidden lines (analytic)
3: shading
16: addition modifier, draws vectorial hatches (effective only in hidden line and shaded mode)
32: addition modifier, use current attributes instead of attributes from 3D (effective only in shading mode)
64: addition modifier, local fill orientation (effective only in shading mode)
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.
1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.
BackgroundColor: background color of the fill
fillOrigoX: X coordinate of the fill origin
fillOrigoY: Y coordinate of the fill origin
filldirection: direction angle of fill

Note: SET FILL is effective for PROJECT2{2}

2D Shapes

162 GDL Reference Guide

Example:

Compatibility note: using PROJECT2 with method bit 32 not set and method bit 3 set (shading), the model being cut with CUTPOLYA
without status bit 2 set (generating cut polygons) resulting cut polygon attributes can be different. Cut polygons will be generated with
attributes defined by the SECT_FILL command in the 3D script.

2D Shapes

GDL Reference Guide 163

PROJECT2{3}
PROJECT2{3} projection_code, angle, method , parts[, backgroundColor, fillOrigoX, fillOrigoY,

filldirection][[,]
PARAMETERS name1=value1 , ... namen=valuen]

Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The 2nd version
PROJECT2{2}, together with a previous SET FILL command, allows the user to control the fill background, origin and direction of the
resulting drawing from the 2D script. The third version, PROJECT2{3}, adds the posibility to define which parts of the projected model are
required and to control separately the attributes of the cut and view part, including the line type. You can also generate the projection with actual
parameters set in the command.
method: the chosen imaging method
1: wireframe
2: hidden lines (analytic)
3: shading
16: addition modifier, draws vectorial hatches (effective only in hidden line and shaded mode)
32: addition modifier, use current attributes instead of attributes from 3D (effective only in shading mode) .
64: addition modifier, local fill orientation (effective only in shading mode)
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.
1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.
4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.
8192: addition modifier: cut fills are slanted
Known limitation: lines of the cut part cannot be treated separately, only all lines together can be set to be inner or contour.
parts: defines the parts to generate. The 15 value means all parts.
part = j1 + 2*j2 + 4*j3 + 8*j4
where j1, j2, j3, j4 can be 0 or 1. The j1, j2, j3, j4 numbers represent whether the corresponding parts of the projected model are present (1) or
omitted (0):
j1: cut polygons (with default fill attributes defined by SECT_FILL) (effective only in shading mode)
j2: cut polygon edges
j3: view polygons
j4: view polygon edges

2D Shapes

164 GDL Reference Guide

DRAWINGS IN THE LIST

These commands only take effect when a list of elements is created in ArchiCAD.
When the library part is a special property type library part and is in some way associated to a library part (Object, Door, Window or Light)
placed on the floor plan, including the following commands in its 2D script will refer to the 2D and 3D part of that library part. This is a virtual
reference that is resolved during the listing process, using the 2D or 3D script of the currently listed element.

DRAWING2
DRAWING2 [expression]

Depending on the value of the expression, creates a drawing of the library part (expression = 0, default) or the label of the element (expression
= 1) associated with the Property Object containing this command.

DRAWING3
DRAWING3 projection_code, angle, method

DRAWING3{2}
DRAWING3{2} projection_code, angle, method [,backgroundColor, origoX, origoY,

filldirection]

Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2 and PROJECT2{2}.
New method flags in DRAWING3{2}:
3: shading
32: use current attributes instead of attributes from 3D
64: local fill orientation

DRAWING3{3}
DRAWING3{3} projection_code, angle, method , parts[, backgroundColor, fillOrigoX, fillOrigoY,

filldirection][[,]
PARAMETERS name1=value1 , ... namen=valuen]

Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2, PROJECT2{2} and PROJECT2{3}.
New method flags in DRAWING3{3}:
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.
4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.

2D Shapes

GDL Reference Guide 165

8192: addition modifier: cut fills are slanted

2D Shapes

166 GDL Reference Guide

GDL Reference Guide 167

GRAPHICAL EDITING
Hotspot-based interactive graphical editing of length and angle type GDL parameters.

HOTSPOT-BASED EDITING COMMANDS

HOTSPOT
HOTSPOT x, y, z [, unID [, paramReference, flags] [, displayParam]]

HOTSPOT2 x, y [, unID [, paramReference, flags][, displayParam]]

unID: unique identifier, which must be unique among the hotspots defined in the library part.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can

be passed as well.
Examples of valid arguments:
 D, Arr[5], Arr[2*I+3][D+1], etc.
flags: hotspot’s type + hotspot’s attribute,
type:
1: length type editing, base hotspot
2: length type editing, moving hotspot
3: length type editing, reference hotspot (always hidden)
4: angle type editing, base hotspot
5: angle type editing, moving hotspot
6: angle type editing, center of angle (always hidden)
7: angle type editing, reference hotspot (always hidden)
attribute can be a combination of the following values or zero:
128: hide hotspot (meaningful for types: 1,2,4,5)
256: editable base hotspot (for types: 1,4)
512: reverse the angle in 2D (for type 6)
To edit a length type parameter, three hotspots must be defined with types 1, 2 and 3. The positive direction of the editing line is given by the
vector from the reference hotspot to the base hotspot. The moving hotspot must be placed along this line at a distance determined by the
associated parameter’s value, measured from the base hotspot.
To edit an angle type parameter, four hotspots must be defined with types 4, 5, 6 and 7. The plane of the angle is perpendicular to the vector that
goes from the center hotspot to the reference hotspot. The positive direction in measuring the angle is counter-clockwise if we look at the plane
from the reference hotspot. In 2D the plane is already given, so the reference hotspot is ignored, and the positive direction of measuring the

Graphical Editing

168 GDL Reference Guide

angle is by default counter-clockwise. This can be changed to clockwise by setting the 512 attribute flag for the center hotspot (type 6). To be
consistent, the vectors from the center hotspot to the moving and the base hotspots must be perpendicular to the vector from the center to the
reference hotspot. The moving hotspot must be placed at an angle determined by the associated parameter measured from the base hotspot
around the center hotspot.
If several sets of hotspots are defined to edit the same parameter, hotspots are grouped together in the order of the execution of the hotspot
commands. If the editable attribute is set for a base hotspot, the user can also edit the parameter by dragging the base hotspot. Since the base
hotspot is supposed to be fixed in the object’s coordinate frame (i.e. its location must be independent of the parameter that is attached to it), the
whole object is dragged or rotated along with the base point. (As the parameter’s value is changing, the moving hotspot will not change its
location.)
Two or three length type sets of hotspots can be combined to allow editing of two or three parameters with only one dragging. If two are
combined, the motion of the hotspot is no longer constrained to a line but to the plane determined by the two lines of each set of length editing
hotspots. In 3D, the combination of three sets of length editing hotspots allows the hotspot to be placed anywhere in space. The two lines must
not be parallel to each other, and the three lines must not be on the same plane. A combined parameter editing operation is started if, at the
location of the picked point, there are two or three editable hotspots (moving or editable base) with different associated parameters. If
parameters are designed for combined editing, the base and reference hotspots are not fixed in the object’s coordinate frame, but must move as
the other parameter’s value changes.
See illustration and example 2.
Example 1, angle editing in 2D:
LINE2 0, 0, A, 0
LINE2 0, 0, A*COS(angle), A*SIN(angle)
ARC2 0, 0, 0.75*A, 0, angle
HOTSPOT2 0, 0, 1, angle, 6
HOTSPOT2 0.9*A, 0, 2, angle, 4
HOTSPOT2 0.9*A*COS(angle), 0.9*A*SIN(angle), 3,
 angle, 5

Graphical Editing

GDL Reference Guide 169

Example 2, combined length type editing with 2 parameters:

RECT2 0, 0, A, B
RECT2 0, 0, sideX, sideY
HOTSPOT2 sideX, 0, 1, sideY, 1
HOTSPOT2 sideX, -0.1, 2, sideY, 3
HOTSPOT2 sideX, sideY, 3, sideY, 2
HOTSPOT2 0, sideY, 4, sideX, 1
HOTSPOT2 -0.1, sideY, 5, sideX, 3
HOTSPOT2 sideX, sideY, 6, sideX, 2

Graphical Editing

170 GDL Reference Guide

Example 3, simple length type editing with 1 parameter:

2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 0, 0, 3, corner_y, 1+128
HOTSPOT2 0, -1, 4, corner_y, 3
HOTSPOT2 0, corner_y, 5, corner_y, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, 0, corner_y
LINE2 1, 0, 0, corner_y
3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT 0, 0, 0, 5, corner_y, 1+128
HOTSPOT 0, -1, 0, 6, corner_y, 3
HOTSPOT 0, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, 0, 0.5, 8, corner_y, 1+128
HOTSPOT 0, -1, 0.5, 9, corner_y, 3
HOTSPOT 0, corner_y, 0.5, 10, corner_y, 2
PRISM_ 4, 0.5,

-1, 0, 15,
1, 0, 15,
0, corner_y, 15,
-1, 0, -1

Graphical Editing

GDL Reference Guide 171

Example 4: combined length type editing with 2 parameters:

2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 corner_x, 0, 3, corner_y, 1+128
HOTSPOT2 corner_x, -1, 4, corner_y, 3
HOTSPOT2 corner_x, corner_y, 5, corner_y, 2
HOTSPOT2 0, corner_y, 3, corner_x, 1+128
HOTSPOT2 -1, corner_y, 4, corner_x, 3
HOTSPOT2 corner_x, corner_y, 5, corner_x, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, corner_x, corner_y
LINE2 1, 0, corner_x, corner_y
3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT corner_x, 0, 0, 5, corner_y, 1+128
HOTSPOT corner_x, -1, 0, 6, corner_y, 3
HOTSPOT corner_x, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, corner_y, 0, 8, corner_x, 1+128
HOTSPOT -1, corner_y, 0, 9, corner_x, 3
HOTSPOT corner_x, corner_y, 0, 10, corner_x, 2
HOTSPOT corner_x, 0, 0.5, 11, corner_y, 1+128
HOTSPOT corner_x, -1, 0.5, 12, corner_y, 3
HOTSPOT corner_x, corner_y, 0.5, 13, corner_y, 2
HOTSPOT 0, corner_y, 0.5, 14, corner_x, 1+128

Graphical Editing

172 GDL Reference Guide

HOTSPOT -1, corner_y, 0.5, 15, corner_x, 3
HOTSPOT corner_x, corner_y, 0.5, 16, corner_x, 2
PRISM_ 4, 0.5,
 -1, 0, 15,
 1, 0, 15,
 corner_x, corner_y, 15,
 -1, 0, -1

HOTLINE2
HOTLINE2 x1, y1, x2, y2

Status line definition between two points.

HOTARC2
HOTARC2 x, y, r, startangle, endangle

Status arc definition with its centerpoint at (x, y) from the angle startangle to endangle, with a radius of r.

HOTLINE
HOTLINE x1, y1, z1, x2, y2, z2, unID
A status line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

HOTARC
HOTARC r, alpha, beta, unID

A status arc in the x-y plane with its center at the origin from angle alpha to beta with a radius of r.
Alpha and beta are in degrees.

GDL Reference Guide 173

STATUS CODES
Status codes introduced in the following pages allow users to create segments and arcs in planar polylines using special constraints.
Planar polylines with status codes at nodes are the basis of many GDL elements:
POLY_, PLANE_, PRISM_, CPRISM_, BPRISM_, FPRISM_, HPRISM_, SPRISM_, SLAB_, CSLAB_, CROOF_,
EXTRUDE, PYRAMID, REVOLVE, SWEEP, TUBE, TUBEA
Status codes allow you:
• to control the visibility of planar polyline edges
• to define holes in the polyline
• to control the visibility of side edges and surfaces
• to create segments and arcs in the polyline

STATUS CODE SYNTAX

The si number is a binary integer (between 0 and 127) or -1.
s = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 [+ a_code]
where j1, j2, j3, j4, j5, j6, j7 can be 0 or 1.
The j1, j2, j3, j4 numbers represent whether the vertices and the sides are present (1) or omitted (0):
j1: lower horizontal edge
j2: vertical edge
j3: upper horizontal edge
j4: side face
j5: horizontal edge in line elimination (for PRISM_ shapes only)
j6: vertical edge in line elimination (for PRISM_ shapes only)
j7: special additional status value effective only when j2=1 and controls the viewpoint dependent visibility of the current vertical

edge
j2=0: the vertical edge is always invisible
j2=1 and j7=1: the vertical edge is only visible when it is a contour observed from the current direction of view
j2=1 and j7=0: the vertical edge is always visible

Status Codes

174 GDL Reference Guide

Possible status values (the heavy lines denote visible edges):

a_code: additional status code (optional) which allow you to create segments and arcs in the polyline.
si=-1 is used to define holes directly into the prism. It marks the end of the contour and the beginning of a hole inside of the

contour. It is also used to indicate the end of one hole’s contour and the beginning of another. Coordinates before that value
must be identical to the coordinates of the first point of the contour/hole. If you have used the -1 mask value, the last mask
value in the parameter list must be -1, marking the end of the last hole.

The holes must be disjunct and internal intersections are forbidden in the polygon for a correct shading/rendering result.

invisible surface visible surface

Status Codes

GDL Reference Guide 175

ADDITIONAL STATUS CODES

The following additional status codes allow you to create segments and arcs in the polyline using special constraints. They refer to the next
segment or arc. Original status code(s) are only effective where they are specified (a “+s” is included after the additional code).

Note: Resolution of arcs is controlled by directives described in the “Attributes” chapter. In case of the POLY2_ statement, if the resolution
is greater than 8, it generates real arcs; otherwise all generated arcs will be segmented.

Previous part of the polyline: current position and tangent is defined

Segment by absolute endpoint
x, y, s
where 0 < s < 100

0

x,y

Status Codes

176 GDL Reference Guide

Segment by relative endpoint
dx, dy, 100+s,
where 0 < s < 100

Segment by length and direction
l, a, 200+s,
where 0 < s < 100

dx

100

dy

l

200

a

Status Codes

GDL Reference Guide 177

Tangential segment by length
l, 0, 300+s,
where 0 < s < 100

Set start point
x1, y1, 600,

300
l

(x1,y1)
600

Status Codes

178 GDL Reference Guide

Close polyline
0, 0, 700,

Set tangent
ex, ey, 800,

700

800

ey

ex

Status Codes

GDL Reference Guide 179

Set centerpoint
x0, y0, 900,

Tangential arc to endpoint
x, y, 1000+s,
where 0 < s < 100

900

(x0,y0)

1000

(x,y)

Status Codes

180 GDL Reference Guide

Tangential arc by radius and angle
r, a, 2000+s,
where 0 < s < 100

Arc using centerpoint and point on the final radius
x, y, 3000+s,
where 0 < s < 100

2000

r

a

x,y

3000

Status Codes

GDL Reference Guide 181

Arc using centerpoint and angle
0, a, 4000+s,
where 0 < s < 100

Full circle using centerpoint and radius
r, 360, 4000+s,
where 0 < s < 100

In this case the s status refers to the whole circle.
All angle values are in degrees. Omitted coordinates marked by 0 (for codes 300, 700, 4000) can have any value.

a4000

r

4000

Status Codes

182 GDL Reference Guide

Examples:

EXTRUDE 21, 0, 0, 3, 1+2+4+16+32,
 0, 0, 0,
 7, 0, 0,
 7, 3, 1,
 6, 3, 1000, ! tangential arc to endpoint
 5, 3, 1001, ! tangential arc to endpoint
 1, 90, 2000, ! tangential arc by radius and angle
 2, 3, 1001, ! tangential arc to endpoint
 1, 3, 900, ! set centerpoint
 1, 2, 3000, ! arc using startpoint, centerpoint and point on final radius
 1, 2.5, 900, ! set centerpoint
 0, -180, 4001, ! arc using start point, centerpoint and angle
 1, 5, 1000, !tangential arc to endpoint
-1, 0, 100, ! segment by (dx, dy)
 2, 225, 200, ! segment by (len, angle)
-1, 0, 800, ! set tangent
-1, 0, 1000, ! tangential arc to endpoint
 0, 0, -1, ! end of contour
 1, 1, 900, ! set centerpoint
0.5, 360, 4000, ! full circle by centerpoint and radius
3.5, 1.5, 900, ! set centerpoint
1, 360, 4001 ! full circle by centerpoint and radius

Status Codes

GDL Reference Guide 183

EXTRUDE 2+5+10+10+2, 0, 0, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2.5, -1, 0,
 2.5, 1, 0,
 1.5, 1, 1,
 1.5, -1, 1001,
 2.5, -1, -1,
 0, 2.5, 600,
 0, -1, 800,
 1, 1.5, 1001,
 -1, 0, 800,
 0, 0.5, 1001,
 0, 1, 800,
 -1, 1.5, 1001,
 1, 0, 800,
 0, 2.5, 1001,
 0, 2.5, 700,
 -1.5, 0, 900,
 -2.5, 0, 600,
 -2.5, 1, 3000,
 -2.5, 1, 0,
 -1.5, 1, 0,
 -1.5, -1, 1001,

Status Codes

184 GDL Reference Guide

 -2.5, -1, 0,
 SQR(2)-1, 45, 200,
 -2.5, 0, 3000,
 -2.5, 0, 700,
 0, -1.5, 900,
 1, 360, 4000

Status Codes

GDL Reference Guide 185

EXTRUDE 3, 1, 1, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2, 360, 4000

ROTY -90
REVOLVE 9, 180, 16+32,
 7, 1, 0,
 6, 1, 0,
 5.5, 2, 0,
 5, 1, 0,
 4, 1, 0,
 3, 1, 900, ! set centerpoint
 0, 180, 4001, ! arc using startpoint, centerpoint and angle
 2, 1, 0,
 1, 1, 0

Status Codes

186 GDL Reference Guide

GDL Reference Guide 187

ATTRIBUTES
In the first part of this chapter, directives influencing the interpretation of GDL statements are presented. Directives may define the smoothness used for cylindrical
elements, representation mode in the 3D view or the assignment of an attribute (color, material, text style, etc.) for the subsequent shapes. Inline attribute definition is
covered in the second part. This feature allows you to assign to your objects customized materials, textures, fill patterns, line types and text styles that are not present in the
current attribute set of your project.

DIRECTIVES

The influence of directives on the interpretation of the subsequent GDL statements remains in effect until the next directive or the end of the
script. Called scripts inherit the current settings: the changes have local influence. Returning from the script resets the settings as they were
before the macro call.

Directives for 3D and 2D Scripts

[LET]

[LET] varnam = n

Value assignment. The LET directive is optional. The variable will store the evaluated value of n.

Attributes

188 GDL Reference Guide

RADIUS

RADIUS radius_min, radius_max

Sets smoothness for cylindrical elements and arcs in polylines.
A circle with a radius of r is represented:
• if r < radius_min, by a hexagon,
• if r > radius_max, by a 36-edged polygon,
• if radius_min < r < radius_max, by a polygon of (6+30*(r–radius_min)/(radius_max–radius_min)) edges.

Arc conversion is proportional to this.
After a RADIUS statement, ανψ previous RESOL and TOLER statements lose their effect.
Parameter restriction:
r_min < r_max
Examples:
RADIUS 1.1, 1.15 RADIUS 0.9, 1.15
CYLIND 3.0, 1.0 CYLIND 3.0, 1.0

Attributes

GDL Reference Guide 189

RESOL

RESOL n

Sets smoothness for cylindrical elements and arcs in polylines. Circles are converted to regular polygons having n sides.
Arc conversion is proportional to this.
After a RESOL statement, any previous RADIUS and TOLER statements lose their effect.
Parameter restriction:
n >= 3
Default:
RESOL 36
Examples:
RESOL 5 RESOL 36

CYLIND 3.0, 1.0 CYLIND 3.0, 1.0

Attributes

190 GDL Reference Guide

TOLER

TOLER d

Sets smoothness for cylindrical elements and arcs in polylines. The error of the arc approximation (i.e., the greatest distance between the
theoretical arc and the generated chord) will be smaller than d.
After a TOLER statement, any previous RADIUS and RESOL statements lose their effect.
Examples:
TOLER 0.1 TOLER 0.01
CYLIND 3.0, 1.0 CYLIND 3.0, 1.0

Note: The RADIUS, RESOL and TOLER directives set smoothness for cylindrical 3D elements (CIRCLE, ARC, CYLIND, SPHERE,
ELLIPS, CONE, ARMC, ARME, ELBOW, REVOLVE) and arcs in 2D polylines using curved edges.

See “Additional Status Codes” on page 175.

PEN

PEN n

Sets the color.
Parameter restriction:
0 < n <= 255
Default:
PEN 1
if there is no PEN statement in the script.
(For library parts, default values come from the library part’s settings. If the script refers to a non existing index, PEN 1 becomes the default
setting.)

Attributes

GDL Reference Guide 191

LINE_PROPERTY

LINE_PROPERTY expr

Defines the property for all subsequently generated lines in the 2D script (RECT2, LINE2, ARC2, CIRCLE2, SPLINE2, SPLINE2A, POLY2,
FRAGMENT2commands) until the next LINE_PROPERTY statement. Default value is generic.
expr possible values:
0: all lines are generic lines
1: all lines are inner
2: all lines are contour

[SET] STYLE

[SET] STYLE name_string

[SET] STYLE index

All the texts generated afterwards will use that style until the next SET STYLE statement.
The index is a constant referring to a style stack in the internal data structure (negative indices mean indices in the data structure of materials
previously defined in the GDL script). This stack is modified during GDL analysis and can also be modified from within the program. The use
of the index instead of the style name is only recommended with the prior use of the IND function.
Default:

SET STYLE 0
(application font, size 5 mm, anchor = 1, normal face) if there is no SET STYLE statement in the script.

Directives Used in 3D Scripts Only

MODEL

MODEL WIRE

MODEL SURFACE

MODEL SOLID

Sets the representation mode in the current script.
MODEL WIRE: only wireframe, no surfaces or volumes. Objects are transparent.
MODEL SURFACE, MODEL SOLID: The generation of the section surfaces is based on the relation of the boundary surfaces,

so that both methods generate the same 3D internal data structure. Objects are opaque.

Attributes

192 GDL Reference Guide

The only distinction can be seen after cutting away a part of the body:
MODEL SURFACE: the inside of bodies will be visible,
MODEL SOLID: new surfaces may appear.
Default:
MODEL SOLID
To illustrate the three modeling methods, consider the following three blocks:
MODEL WIRE
BLOCK 3,2,1
ADDY 4
MODEL SURFACE
BLOCK 3,2,1
ADDY 4
MODEL SOLID
BLOCK 3,2,1
After cutting them with a plane:

[SET] MATERIAL

[SET] MATERIAL name_string

[SET] MATERIAL index

All the surfaces generated afterwards will represent that material until the next MATERIAL statement. Surfaces in the
BPRISM_, CPRISM_, FPRISM_, HPRISM_
SPRISM_, CSLAB_, CWALL_, BWALL_, XWALL_,
CROOF_, MASS
bodies are exceptions to this rule.
The index is a constant referring to a material stack in the internal data structure (negative indices mean indices in the data structure of
mataerials previously defined in the GDL script). This stack is modified during GDL analysis and can also be modified from within the
program. The use of the index instead of the material name is only recommended with the prior use of the IND function.
index 0 has a special meaning: surfaces use the color of the current pen and they have a matte appearance.

Attributes

GDL Reference Guide 193

Default:
MATERIAL 0
if there is no MATERIAL statement in the script.
(For Library parts, default values are read from the Library part’s settings. If the script refers to a non-existing index, MATERIAL 0 becomes the
default setting.)

SECT_FILL

SECT_FILL fill, fill_background_pen,
fill_pen, contour_pen

or

SECT_ATTRS fill, fill_background_pen,
fill_pen, contour_pen [, line_type]

Defines the attributes used for the cut part of the 3D elements in the Section/Elevation window and the PROJECT2{3} command (for
compatibility reasons previous versions of PROJECT2 are not affected).

fill: fill name or index number
fill_background_pen: fill background pencolor number
fill_pen: fill pencolor number
contour_pen: fill contour pencolor number
line_type: line type of polygon edges

Attributes

194 GDL Reference Guide

SHADOW

SHADOW keyword_1[, keyword_2]

Controls the shadow casting of the elements in PhotoRendering and in vectorial shadow casting.
keyword_1:ON, AUTO or OFF
keyword_2: ON or OFF
ON: all the subsequent elements will cast shadows in all circumstances.
OFF: none of the subsequent elements will cast shadows in any circumstance.
AUTO: shadow casting will be determined automatically.
• Setting SHADOW OFF for hidden parts will spare memory space and processing time.
• Setting SHADOW ON ensures that even tiny details will cast shadows.

The optional second keyword controls the appearance of shadows on surfaces.
• SHADOW keyword_1, OFF disables vectorial shadows on the following surfaces.
• SHADOW keyword_1, ON switches back vectorial shadows.

Default:
SHADOW AUTO

SHADOW OFF
BRICK 1, 1, 1
ADDX 2
SHADOW ON
BRICK 1, 1, 2
ADDX 2
SHADOW OFF
BRICK 1, 1, 3

Attributes

GDL Reference Guide 195

Directives Used in 2D Scripts Only

DRAWINDEX

DRAWINDEX number

Defines the drawing order of 2D Script elements. Elements with a smaller drawindex will be drawn first.
Restriction of parameters:
0 < number <= 50
(In the current version of GDL only the 10, 20, 30, 40 and 50 DRAWINDEX values are valid. Other values will be rounded to these.)
If no DRAWINDEX directive is present, the default drawing order is the following:
1 Figures
2 Fills
3 Lines
4 Text elements

[SET] FILL

[SET] FILL name_string

[SET] FILL index

All the 2D polygons generated afterwards will represent that fill until the next SET FILL statement.
The index is a constant referring to a fill stack in the internal data structure. This stack is modified during GDL analysis and can also be
modified from within the program. The use of the index instead of the fill name is only recommended with the prior use of the IND function.
Default:
SET FILL 0
i.e., empty fill, if there is no SET FILL statement in the script.

Attributes

196 GDL Reference Guide

[SET] LINE_TYPE

[SET] LINE_TYPE name_string

[SET] LINE_TYPE index

All the 2D lines generated afterwards will represent that line type (in lines, arcs, polylines) until the next SET LINE_TYPE statement.
The index is a constant that refers to a line type stack in the internal data structure. This stack is modified during GDL analysis and can also be
modified from the program. The use of the index instead of the line type name is only recommended with the prior use of the IND function.
Default:
SET LINE_TYPE 1
i. e., solid line, if there is no SET LINE_TYPE statement in the script.

INLINE ATTRIBUTE DEFINITION

Attributes in can be created using the material, fill and line type dialog boxes. These floor plan attributes can be referenced from any GDL script.
Attributes can also be defined in GDL scripts. There are two different cases:
• Attribute definition in the MASTER_GDL script. The MASTER_GDL script is interpreted when the library that contains it is loaded in the

memory. The MASTER_GDL attributes are merged into the floor plan attributes; attributes with the same names are not replaced. Once the
MASTER_GDL is loaded, the attributes defined in it can be referenced from any script.

• Attribute definition in library parts. The materials and textures defined this way can be used in the script and its second generation scripts.
Fills and line types defined and used in the 2D script have the same behavior as if they were defined in the MASTER_GDL script.

The Check GDL Script command in the script window helps to verify whether the material, fill, line type or style parameters are correct.
When a material, fill, line type or style is different in the 3D interpretation of the library part from the intended one, but there is no error
message, this probably means that one or more of the parameter values are incorrect. The Check GDL Scripts command will help you with
detailed messages to find these parameters.

Materials

DEFINE MATERIAL

DEFINE MATERIAL name type, parameter1,
parameter2, ... parametern

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details.
Any GDL script can include material definitions prior to the first reference to that material name. This material can only be used for 3D
elements in its own script and its second generation scripts.
name: name of the material.
type: type of the material. The actual number (n) of parameters that define the material is different, depending on the type. The

meaning of the parameters and their limits are explained in the examples’ comments.

Attributes

GDL Reference Guide 197

0: general definition, n=16
1: simple definition, n=9 (extra parameters are constants or calculated from given values)
2-7: predefined material types, n=3

The three values are the RGB components of the surface color. Other parameters are constants or calculated from the color.
2: matte
3: metal
4: plastic
5: glass
6: glowing
7: constant

10: general definition with fill parameter, n=17
11: simple definition with fill parameter, n=10
12-17: predefined material types with fill parameter, n=4
20: general definition with fill, color index of fill and index of texture parameters, n=19
21: simple definition with fill, color index of fill and index of texture parameters, n=12
22-27: predefined material types with fill, color index of fill and index of texture parameters, n=6
Special meanings for types 20-27:

If the pen number is zero, vectorial hatches will be generated with the active pen.
Zero value for a texture index allows you to define materials without a vectorial hatch or texture.

Examples:
DEFINE MATERIAL "water" 0,

0.5284, 0.5989, 0.6167,
! surface RGB [0.0..1.0]

1.0, 0.5, 0.5, 0.9,
! ambient, diffuse, specular,transparent
! coefficients [0.0..1.0]
2.0,
! shining [0.0..100.0]

1,
! transparency attenuation [0.0..4.0]

0.5284, 0.5989, 0.6167,
! specular RGB [0.0..1.0]

0, 0, 0,
! emission RGB [0.0..1.0]

0.0
! emission attenuation [0.0..65.5]
DEFINE MATERIAL "asphalt" 1,

0.1995, 0.2023, 0.2418,

Attributes

198 GDL Reference Guide

! surface RGB [0.0..1.0]
1.0, 1.0, 0.0, 0.0,

! ambient, diffuse, specular,transparent
! coefficients [0.0..1.0]

0,
! shining [0..100]

0
! transparency attenuation [0..4]
DEFINE MATERIAL "matte red" 2,

1.0, 0.0, 0.0
! surface RGB [0.0..1.0]
DEFINE MATERIAL "Red Brick" 10,

0.878294, 0.398199, 0.109468,
0.58, 0.85, 0.0, 0.0,
0,
0.0,
0.878401, 0.513481, 0.412253,
0.0, 0.0, 0.0,
0,

IND(FILL, "common brick")
! fill index
DEFINE MATERIAL "Yellow Brick+*" 20,

1, 1, 0,
! surface RGB [0.0 .. 1.0]

0.58, 0.85, 0, 0,
! ambient, diffuse, specular,transparent
! coefficients [0.0 .. 1.0]

0,
! shining [0.0 .. 100.0]

0,
! transparency attenuation [0.0 .. 4.0]

0.878401, 0.513481, 0.412253,
! specular RGB [0.0 .. 1.0]

0, 0, 0,
! emission RGB [0.0 .. 1.0]

0,
! emission attenuation [0.0 .. 65.5]

IND(FILL, "common brick"), 61,
IND(TEXTURE, "Brick")

! Fill index, color index, texture index

Attributes

GDL Reference Guide 199

DEFINE MATERIAL BASED_ON

DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...][[,]
ADDITIONAL_DATA name1 = expr1 [, ...]]

Material definition based on an existing material. Specified parameters of the original material will be overwritten by the new values, other
parameters remain untouched. Using the command without actual parameters results in a material exactly the same as the original, but with a
different name. Parameter values of a material can be obtained using the ”REQUEST{2} ("Material_info", name_or_index, param_name,
value_or_values)” function.
orig_name: name of the original material (name of an existing, previously defined in GDL or floor plan material)
namei: material parameter name to be overwritten by a new value. Names corresponding to parameters of material definition:
gs_mat_surface_r, gs_mat_surface_g, gs_mat_surface_b (surface RGB [0.0..1.0])

gs_mat_ambient (ambient coefficient [0.0..1.0])
gs_mat_diffuse (diffuse coefficient [0.0..1.0])
gs_mat_specular (specular coefficient [0.0..1.0])
gs_mat_transparent (transparent coefficient [0.0..1.0])
gs_mat_shining (shininess [0.0..100.0])
gs_mat_transp_att (transparency attenuation [0.0..4.0])
gs_mat_specular_r, gs_mat_specular_g, gs_mat_specular_b (specular color RGB [0.0..1.0])
gs_mat_emission_r, gs_mat_emission_g, gs_mat_emission_b (emission color RGB [0.0..1.0])
gs_mat_emission_att (emission attenuation [0.0..65.5])
gs_mat_fill_ind (fill index)
gs_mat_fillcolor_ind (fill color index)
gs_mat_texture_ind (texture index)

expri: new value to overwrite the specified parameter of the material. Value ranges are the same as at the material definition.

Attributes

200 GDL Reference Guide

Example:
n = REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_emission_rgb ", em_r, em_g, em_b)
em_r = em_r + (1 - em_r) / 3
em_g = em_g + (1 - em_g) / 3
em_b = em_b + (1 - em_b) / 3
DEFINE MATERIAL "Brick-Face light" [,] BASED_ON "Brick-Face" PARAMETERS gs_mat_emission_r =
em_r,
gs_mat_emission_g = em_g, gs_mat_emission_b = em_b

SET MATERIAL "Brick-Face"
BRICK a, b, zzyzx
ADDX a
SET MATERIAL "Brick-Face light"
BRICK a, b, zzyzx

DEFINE TEXTURE

DEFINE TEXTURE name expression, x, y, mask, angle

Any GDL script can include texture definition prior to the first reference to that texture name. The texture can be used only in the script in
which it was defined and its subsequent second generation scripts.
name: name of the texture
expression: picture associated with the texture. A string expression means a file name, a numerical expression an index of a picture

stored in the library part. A 0 index is a special value which refers to the preview picture of the library part.
x: logical width of the texture
y: logical height of the texture
mask: j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9

where j1, j2, j3, j4, j5, j6, j7, j8, j9 can be 0 or 1.
Alpha channel controls (j1... j6):

j1: alpha channel changes the transparency of texture
j2: Bump mapping or surface normal perturbation.
Bump mapping uses the alpha channel to determine the amplitude of the surface normal.
j3: alpha channel changes the diffuse color of texture
j4: alpha channel changes the specular color of texture
j5: alpha channel changes the ambient color of texture
j6: alpha channel changes the surface color of texture

Connection controls (j7... j9):

Attributes

GDL Reference Guide 201

If the value is zero, normal mode is selected:

j7: the texture will be shifted randomly.

j8: mirroring in ‘x’ direction

x

y

x

y

x

y

Attributes

202 GDL Reference Guide

j9: mirroring in ‘y’ direction

angle: angle of the rotation.
Example:
DEFINE TEXTURE "Brick" "Brick.PICT", 1.35, 0.3, 256+128, 35.0

Fills

DEFINE FILL

DEFINE FILL name [[,] FILLTYPES_MASK fill_types,] pattern1, pattern2, pattern3, pattern4,
pattern5, pattern6, pattern7, pattern8,
spacing, angle, n,
frequency1, direction1, offset_x1, offset_y1, m1,
length11, ... length1m,
...
frequencyn, directionn, offset_xn,
lengthn1, ... lengthnm

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details.
Any GDL script may include fill definitions prior to the first reference to that fill name. The fill defined this way can be used only in the script in
which it was defined and its subsequent second generation-scripts.

x

y

Attributes

GDL Reference Guide 203

name: name of the fill
fill_types = j1 + 2 * j2 + 4 * j3
j1: cut fills
j2: cover fills
j3: drafting fills
If the j bit is set, the defined fill can be used in ArchiCAD corresponding to its specified type. Default is all fills (0).
pattern definition: pattern1, pattern2, pattern3, pattern4, pattern5, pattern6, pattern7, pattern8: 8 numbers between 0 and 255

representing binary values. Defines the bitmap pattern of the fill.

spacing: hatch spacing - defines a global scaling factor for the whole fill. All values will be multiplied by this number in both the x
and y direction.

angle: global rotation angle in degrees

....

i1

Y

X

i2

im

i

i

line partsm

i

i

length

length

length

offset_y

offset_x

frequency
frequencyi

direction

y

x

spacing*y

spacing*x

angle

Attributes

204 GDL Reference Guide

n: number of hatch lines
frequencyi: frequency of the line (the distance between two lines is spacing * frequencyi)

diri: direction angle of the line in degrees
offset_xi, offset_yi: offset of the line from the origin
mi: number of line parts
lengthij: length of the line parts (the real length is spacing * lengthij). Line parts are segments and spaces following each other. First

line part is a segment, zero length means a dot.
The bitmap pattern is only defined by the pattern1... pattern8 parameters and is used when the display options for Polygon Fills are set to
“Bitmap Pattern”. To define it, choose the smallest unit of the fill, and represent it as dots and empty spaces using a rectangular grid with 8x8
locations. The 8 pattern parameters are decimal representations of the binary values in the lines of the grid (a dot is 1, an empty space is 0).
The vectorial hatch is defined by the second part of the fill definition as a collection of dashed lines repeated with a given frequency
(frequencyi). Each line of the collection is described by its direction (directioni), its offset from the origin (offset_xi, offset_yi) and the dashed
line definition which contains segments and spaces with the given length (lengthij) following each other.

Note: Only simple fills can be defined with the DEFINE FILL command. There is no possibility to define symbol fills.
Example:
DEFINE FILL "brick" 85, 255, 136, 255,

34, 255, 136, 255,
0.08333, 0.0, 4,
1.0, 0.0, 0.0, 0.0, 0,
3.0, 90.0, 0.0, 0.0, 2,
1.0, 1.0,
3.0, 90.0, 1.5, 1.0, 4,
1.0, 3.0, 1.0, 1.0,
1.5, 90.0, 0.75, 3.0, 2,
1.0, 5.0

Bitmap pattern:
Pattern: Binary value:
pattern1 = 85 01010101 • • • •
pattern2 = 255 11111111 ••••••••
pattern3 = 136 10001000 • •
pattern4 = 255 11111111 ••••••••
pattern5 = 34 00100010 • •
pattern6 = 255 11111111 ••••••••
pattern7 = 136 10001000 • •
pattern8 = 255 11111111 ••••••••
View: Vectorial hatch:

Attributes

GDL Reference Guide 205

DEFINE FILLA

DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,] pattern1, pattern2, pattern3, pattern4,
pattern5, pattern6, pattern7, pattern8, spacing_x, spacing_y, angle, n, frequency1,
directional_offset1, direction1,
offset_x1, offset_y1, m1, length11,
...
length1m, ... frequencyn,
directional_offsetn, directionn,
offset_xn, offset_yn, mn,
lengthn1, ... lengthnm

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details.

An extended DEFINE FILL statement.

Attributes

206 GDL Reference Guide

Additional parameters:

spacing_x, spacing_y: spacing factor in the x and y direction, respectively. These two parameters define a global scaling factor for
the whole fill. All values in the x direction will be multiplied by spacing_x and all values in the y direction will be multiplied
by spacing_y.

directional_offseti: the offset of the beginning of the next similar hatch line, measured along the line’s direction. Each line of the
series will be drawn at a distance defined by frequencyi with an offset defined by directional_offseti. The real length of the
offset will be spacing * directional_offseti.

xspacingx*x

spacingy*y

y

angle

Attributes

GDL Reference Guide 207

Example:
DEFINE FILLA "TEST" 8, 142, 128, 232,

8, 142, 128, 232,
0.5, 0.5, 0, 2,
2, 1, 90, 0,
0, 2, 1, 1,
1, 2, 0, 0, 0,
2, 1, 3

FILL "TEST"
POLY2 4, 6,

-0.5, -0.5, 12, -0.5,
12, 6, -0.5, 6

Bitmap pattern:
Pattern: Binary value:
pat1 = 8 00001000 .
pat2 = 142 10001110 • •••
pat3 = 128 10000000 •
pat4 = 232 11101000 ••• •
pat5 = 8 00001000 •
pat6 = 142 10001110 • •••
pat7 = 128 10000000 •
pat8 = 232 11101000••• •
View: Vectorial hatch:

DEFINE SYMBOL_FILL
DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]

pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
spacingx1, spacingy1, spacingx2, spacingy2,
angle, scaling1, scaling2, macro_name [,] PARAMETERS [name1
= value1, ... namen = valuen]

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details.

Attributes

208 GDL Reference Guide

An extended DEFINE FILL statement, which allows you to include a library part drawing in a fill definition. The usage of macro_name and the
parameters are the same as for the CALL command.
Parameters:
spacingx1, spacingx2: horizontal spacings
spacingy1, spacingy2: vertical spacings
scaling1: horizontal scale
scaling2: vertical scale
macro_name: the name of the library part.

DEFINE SOLID_FILL

DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]]

Defines a solid fill.
Note: This command can contain additional data definition.

See “Additional Data” on page 214 for details..

DEFINE EMPTY_FILL

DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]

Defines an empty fill.
Note: This command can contain additional data definition.

See “Additional Data” on page 214 for details.

Attributes

GDL Reference Guide 209

DEFINE LINEAR_GRADIENT_FILL

DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

Define linear gradient fill.

DEFINE RADIAL_GRADIENT_FILL

DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

Define radial gradient fill.

DEFINE TRANSLUCENT_FILL

DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
percentage

Define a fill, which shows the background and foreground colors in mixture defined by the given percentage value.
percentage: volume of the foreground color; 0 displays the background color only (like empty fill), 100 displays the foreground color only (like
solid fill)

DEFINE IMAGE_FILL

DEFINE IMAGE_FILL name image_name [[,] fillTYPES_MASK fill_types]
part1, part2, part3, part4, part5, part6, part7, part8,
image_vert_size, image_hor_size, image_mask, image_rotangle

Define a fill based on an image pattern.
image_name: name of the pattern image loaded in the current library
image_vert_size, image_hor_size: model size of the pattern
image_mask: tiling directive
image_rotangle: rotation angle of the pattern from the normal coordinate system

Attributes

210 GDL Reference Guide

Line Types

DEFINE LINE_TYPE

DEFINE LINE_TYPE name spacing, n,
length1, ... lengthn

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details..
Any GDL script may include line type definitions prior to the first reference to that line-type name. The line type defined this way can be used
only for 2D elements in the script in which it was defined and its subsequent second generation scripts.
name: name of the line type
spacing: spacing factor
n: number of the line parts
lengthi: length of the line parts (the real length is spacing * lengthi). Line parts consist of segments and spaces. First line part is a

segment, zero length means a dot.
Note: Only simple line types can be defined in the DEFINE LINE_TYPE command, that is, ones consisting only of segments and spaces,
there is no possibility to define symbol lines.

Example:
DEFINE LINE_TYPE "line - - ." 1,
 6, 0.005, 0.002, 0.001, 0.002, 0.0, 0.002

DEFINE SYMBOL_LINE

DEFINE SYMBOL_LINE name dash, gap, macro_name PARAMETERS [name1 = value1, ... namen = valuen]

Note: This command can contain additional data definition.
See “Additional Data” on page 214 for details.
An extended DEFINE LINE statement, which allows you to include a library part drawing in a line definition. The usage of macro_name and
the parameters are the same as for the CALL command.
Parameters:
dash: scale of both line components
gap: gap between each component

Attributes

GDL Reference Guide 211

Styles

DEFINE STYLE

DEFINE STYLE name font_family, size, anchor, face_code

Recommended to be used with the TEXT2 and TEXT commands.
GDL scripts may include style definitions prior to the first reference to that style name. The style defined this way can be used only in the script
in which it was defined and its subsequent second generation scripts.
name: name of the style
font_family: name of the used font family (e.g., Garamond)
size: height of the “l” character in millimeters in paper space or meters in model space
If the defined style is used with the TEXT2 and TEXT commands, size means character heights in millimeters.
If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size meaning millimeters or meters depends on the
fixed_height parameter of the TEXTBLOCK definition, while the outline and shadow face_code values and the anchor values are not effective.
anchor: code of the position point in the text

face_code: a combination of the following values:
0 normal
1 bold
2 italic
4 underline
8 outline
16 shadow

Note: The outline and shadow values are effective only on Macintosh platform and up to the 8.1 version of ArchiCAD.

2 3

4 5 6

7 8 9

1

Attributes

212 GDL Reference Guide

DEFINE STYLE {2}

DEFINE STYLE{2} name font_family, size, face_code

New version of style definition, recommended to be used with PARAGRAPH definitions.
name: name of the style
font_family: name of the used font family (e.g., Garamond)
size: height of the characters in mm or m in model space
face_code: a combination of the following values:

0 normal
1 bold
2 italic
4 underline
32 superscript

64 subscript
128 strikethrouth

If the defined style is used with the TEXT2 command, size means character heights in millimeters, while the superscript, subscript and
strikethrouth face_code values are not effective. If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size
meaning millimeters or meters depends on the fixed_height parameter of the TEXTBLOCK definition.

Paragraph

PARAGRAPH

PARAGRAPH name alignment, firstline_indent,
left_indent, right_indent, line_spacing [,
tab_size1, ...]
[PEN index]
[[SET] STYLE style1]
[[SET] MATERIAL index]
'string1'
'string2'
...
'string n'
[PEN index]
[[SET] STYLE style2]
[[SET] MATERIAL index]
'string1'

Attributes

GDL Reference Guide 213

'string2'
...
'string n'
...

ENDPARAGRAPH
GDL scripts may include paragraph definitions prior to the first reference to that paragraph name. The paragraph defined this way can be used
only in the script in which it was defined and its subsequent second generation scripts. A paragraph is defined to be a sequence of an arbitrary
number of strings (max 256 characters long each) with different attributes: style, pen and material (3D). If no attributes are specified inside the
paragraph definition, actual (or default) attributes are used. The new lines included in a paragraph string (using the special character '\n') will
automatically split the string into identical paragraphs, each containing one line. Paragraph definitions can be referenced by name in the
TEXTBLOCK command. All length type parameters (firstline_indent, left_indent, right_indent, tab_position) meaning millimeters or meters
depends on the fixed_height parameter of the TEXTBLOCK definition.
name: name of the paragraph
alignment: alignment of the paragraph strings. Possible values:

1: left aligned, 2: center aligned , 3: right aligned, 4: full justified
firstline_indent: first line indentation, in mm or m in model space
left_indent: left indentation, in mm or m in model space
right_indent: right indentation, in mm or m in model space
line_spacing: line spacing factor. The default distance between the lines (character size + distance to the next line) defined by the

actual style will be multiplied by this number.
tab_positioni: consecutive tabulator positions (each realative to the beginning of the paragraph), in mm or m in model space.

Tabulators in the paragraph strings will snap to these positions. If no tabulator positions are specified, default values are used
(12.7 mm).

Textblock

TEXTBLOCK

TEXTBLOCK name width, anchor, angle, width_factor, charspace_factor, fixed_height,
'string_expr1' [, 'string_expr2', ...]

Textblock definition. GDL scripts may include textblock definitions prior to the first reference to that textblock name. The textblock defined
this way can be used only in the script in which it was defined and its subsequent second generation scripts. A textblock is defined to be a
sequence of an arbitrary number of strings or paragraphs which can be placed using the “RICHTEXT2” on page 159 and “RICHTEXT” on
page 118. Use the ”REQUEST ("TEXTBLOCK_INFO", textblock_name, width, height)” to obtain information on the calculated width and height of
a TEXTBLOCK.

Attributes

214 GDL Reference Guide

width: textblock width in mm or m in model space , if 0 it will be calculated automatically
anchor: code of the position point in the text

angle: rotation angle of the textblock in degrees
width_factor: character width factor. Character widths defined by the actual style will be multiplied by this number.
charspace_factor: character space factor. The horizontal distance between two characters will be multiplied by this number.
fixed_height: possible values

1: the placed TEXTBLOCK will be scale-independent and all specified length type parameters will mean millimeters
0: the placed TEXTBLOCK will be scale-dependent and all specified length type parameters will mean meters in model
space.

string_expri: means paragraph name if it was previously defined, simple string otherwise (with default paragraph parameters).

Additional Data
Attribute definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword. The additional data must be
entered after the previously defined parameters of the attribute command. An additional data has a name (namei)and a value (valuei), which can
be an expression of any type, even an array. If a string parameter name ends with the substring “_file”, its value is considered to be a file name
and will be included in the archive project.Different meanings of additional data can be defined and used by ArchiCAD or Add-Ons to
ArchiCAD.
See meanings of LightWorks Add-On parameters at http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/13.
Additional data definition is available in the following commands:

DEFINE MATERIAL

DEFINE MATERIAL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

2 3

4 5 6

7 8 9

1

http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/11

Attributes

GDL Reference Guide 215

DEFINE FILL

DEFINE FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE FILLA

DEFINE FILLA parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE SYMBOL_FILL

DEFINE SYMBOL_FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE LINE_TYPE

DEFINE LINE_TYPE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE SYMBOL_LINE

DEFINE SYMBOL_LINE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

External file dependence

FILE_DEPENDENCE "name1" [, "name2", ...]

You can give a list of external files on which your GDL script depends on. File names should be constant strings.
All files specified here will be included in the archive project (like constant macro names used in CALL statements and constant picture names
used in various GDL commands). The command works on this level only: if the specified files are library parts, their called maro files will not be
included.
The command can be useful in cases when external files are referenced at custom places in the GDL script, for example:
ADDITIONAL_DATA file parameters, data files in file operations.

Attributes

216 GDL Reference Guide

GDL Reference Guide 217

NON-GEOMETRIC SCRIPTS
In addition to the 3D and 2D script windows that define the appearance of the GDL Object, further scripts are available for adding complementary information to it.
These are the Properties Script used for quantity calculations, the Parameter Script that includes the list of possible values for different parameters, and the User Interface
Script for creating a custom interface for parameter entry. The commands available for all these script types are detailed on the following pages.

THE PROPERTIES SCRIPT

Library parts have a GDL window reserved for the Properties script. This script allows you to make library part properties dependent on
parameters, and, through a directive, define their place in the final component list. By using a few commands, it is possible to define in the script
local descriptors and components (created in the Properties windows of earlier ArchiCAD versions). Descriptors and components from
external databases can also be referenced. Code lengths cannot exceed 32 characters.
In the Properties script, you can use any GDL command that does not generate a shape.

DATABASE_SET
DATABASE_SET set_name [descriptor_name, component_name, unit_name, key_name, criteria_name,

list_set_name]

Database set definition or Database set selection. If this command is placed in a MASTER_GDL script, it will define a Database set containing
Descriptor, Component, Unit, Key, Criteria and List Scheme files.
This Database set name can then be referenced from Properties Scripts using the same command with only the set_name parameter as a
directive, by selecting the actual Database set that REF COMPONENTs and REF DESCRIPTORs refer to. The default Database set name is
“Default Set”, and will be used if no other set has been selected. The default Database set file names are: DESCDATA, COMPDATA,
COMPUNIT, LISTKEY, LISTCRIT, LISTSET. All these names get translated in localized ArchiCAD versions.
Scripts can include any number of DATABASE_SET selections.
set_name: Database set name
descriptor_name: Descriptor data file name
component_name: Component data file name
unit_name: Unit data file name
key_name: Key data file name
criteria_name: Criteria file name
list_set_name: List Scheme file name

Non-Geometric Scripts

218 GDL Reference Guide

DESCRIPTOR
DESCRIPTOR name [,code, keycode]

Local descriptor definition. Scripts can include any number of DESCRIPTORs.
name: can extend to more than one line. New lines can be defined by the character ‘\n’ and tabulators by ‘\t’. Adding ‘\’ to the end

of a line allows you to continue the string in the next line without adding a new line. Inside the string, if the ‘\’ character is
doubled (\\), it will lose its control function and simply mean ‘\’.
The length of the string (including the new line characters) cannot exceed 255 characters: additional characters will be simply
cut by the compiler. If you need a longer text, use several DESCRIPTORs.

code: string, defines a code for the descriptor
keycode: string, reference to a key in an external database.
The key will be assigned to the descriptor.

REF DESCRIPTOR
REF DESCRIPTOR code [, keycode]

Reference by code and keycode string to a descriptor in an external database.

COMPONENT
COMPONENT name, quantity, unit [, proportional_with, code, keycode, unitcode]
Local component definition. Scripts can include any number of COMPONENTs.
name: the name of the component (max. 128 characters)
quantity: a numeric expression
unit: the string used for unit description
proportional_with: a code between 1 and 6. When listing, the component quantity defined above will be automatically multiplied by

a value calculated for the current listed element:
1: item
2: length
3: surface A
4: surface B
5: surface
6: volume

code: string, defines a code for the component
keycode: string, reference to a key in an external database. The key will be assigned to the component.
unitcode: string, reference to a unit in an external database that controls the output format of the component quantity. This will

replace the locally defined unit string.

Non-Geometric Scripts

GDL Reference Guide 219

REF COMPONENT
REF COMPONENT code [, keycode [, numeric_expression]]

Reference by code and keycode string to a component in an external database. The value to multiply by in the component database can be
overwritten by the optional numeric expression specified here.

BINARYPROP
BINARYPROP

Binaryprop is a reference to the binary properties data (components and descriptors) defined in the library part in the Components and
Descriptors sections.
DATABASE_SET directives have no effect on the binary data.

SURFACE3D ()
SURFACE3D ()

The Surface 3D () function gives you the surface of the 3D shape of the library part.
Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all
shapes’ surfaces.

VOLUME3D ()
VOLUME3D ()

The Volume 3D () function gives you the volume of the 3D shape of the library part.
Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all
shapes’ volumes.

POSITION
POSITION position_keyword

Effective only in the Component List.
Changes only the type of the element the following descriptors and components are associated to. If there are no such directives in the
Properties script, descriptors and components will be listed with their default element types.
Keywords are the following:
WALLS
COLUMNS
BEAMS
DOORS
WINDOWS

Non-Geometric Scripts

220 GDL Reference Guide

OBJECTS
CEILS
PITCHED_ROOFS
LIGHTS
HATCHES
ROOMS
MESHES
A directive remains valid for all succeeding DESCRIPTORs and COMPONENTs until the next directive is ascribed. A script can include any
number of directives.
Example:
DESCRIPTOR "\tPainted box.\n\t Properties:\n\
 \t\t - swinging doors\n\
 \t\t - adjustable height\n\
 \t\t - scratchproof"
REF DESCRIPTOR "0001"
s = SURFACE3D () !wardrobe surface
COMPONENT "glue", 1.5, "kg"
COMPONENT "handle",2*c,"nb"!c number of doors
COMPONENT "paint", 0.5 * s, "kg"
POSITION WALLS
REF COMPONENT "0002"

DRAWING
DRAWING

DRAWING: Refers to the drawing described in the 2D script of the same library part. Use it to place drawings in your bill of materials.

THE PARAMETER SCRIPT

Parameter lists are sets of possible numerical or string values. They can be applied to the parameters as defined in the Parameter Script of the
Library Part or in the MASTER_GDL script. The parameter has to be of simple type. Type compatibility is verified by the GDL compiler.
The Parameter Script will be interpreted each time a value list type parameter value is to be changed, and the possible values defined in the script
will appear in a pop-up menu.

Non-Geometric Scripts

GDL Reference Guide 221

VALUES
VALUES "fillparam_name" [[,] FILLTYPES_MASK fill_types,] [,]value_definition1

[, value_definition2, ...]

name: the name of the parameter
fill_types = j1 + 2 * j2 + 4 * j3
j1: cut fills
j2: cover fills
j3: drafting fills
Can only be used for fill type parameters. If the j bit is set, the fill popup corresponding to the "fillparam_name" parameter will automatically
contain only the fills of the specified type. Default is all fills (0).
value_definitioni: value definition, can be:
expressioni: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered, or
RANGE left_delimiter [expression1], [expression2]

 right_delimiter [STEP step_start_value,
 step_value]

range definition, with optional step
left_delimiter: [, meaning ‘>=’, or (, meaning ‘>’
expression1: lower limit expression
expression2: upper limit expression
right_delimiter:], meaning ‘<=’, or), meaning ‘<‘
step_start_value: starting value
step_value: step value

Non-Geometric Scripts

222 GDL Reference Guide

Examples:
VALUES "par1" 1, 2, 3
VALUES "par2" "a", "b"
VALUES "par3" 1, CUSTOM, SIN (30)
VALUES "par4" 4,RANGE(5, 10],12,RANGE(,20]
 STEP 14.5, 0.5, CUSTOM
! Example to read all string values from a file
! and use it in a value list
DIM sarray[]
! file in the library, containing parameter data
filename = "ProjectNotes.txt"
ch1 = OPEN ("text", filename, "MODE=RO, LIBRARY")
i = 1
j = 1
sarray[1] = ""
! collect all strings
DO
n = INPUT (ch1, i, 1, var)
IF n > 0 AND VARTYPE (var) = 2 THEN
sarray[j] = var
j = j + 1
ENDIF
i = i + 1
WHILE n > 0
CLOSE ch1
! parameter popup with strings read from the file
VALUES "RefNote" sarray

PARAMETERS
PARAMETERS name1 = expression1 [,

name2 = expression2, ...,
namen = expressionn]

namei: the name of the parameter
expressioni: the new value of the parameter
Using this command, the parameter values of a Library Part can be modified by the Parameter Script.
The modification will only be effective for the next interpretation. Commands in macros refer to the caller’s parameters. If the parameter is a
value list, the value chosen will be either an existing value, the custom value, or the first value from the value list.
In addition, the global string variable GLOB_MODPAR_NAME contains the name of the last user-modified parameter.

Non-Geometric Scripts

GDL Reference Guide 223

LOCK
LOCK name1 [, name2, ..., namen]

Locks the named parameter in the settings dialog box. A locked parameter will appear grayed in the dialog box and its value cannot be modified
by the user.

HIDEPARAMETER
HIDEPARAMETER name1 [, name2, ..., namen]

Hides the named parameter(s) and its child parameters in the settings dialog box. A parameter hidden using this command in the parameter
script will automatically disappear from the parameter list.

THE USER INTERFACE SCRIPT

Using the following GDL commands, you can define a custom interface for a Library Part’s Custom Settings panel in the settings dialog box. If
you click the “Set as default” button in the Library Part editor, the custom interface will be used by default in the Object’s (Door’s, Window’s,
etc.) settings dialog box. Parameters with custom control are not hidden automatically on the original parameter list, but they can be hidden
manually in the library part editor.

The origin of the coordinate system is in the top-left corner. Sizes and coordinate values are measured in pixels.

UI_DIALOG
UI_DIALOG title [, size_x, size_y]

Defines the title of the dialog box. Currently, the size of the available area is fixed at 444 x 266 pixels, and the size_x and size_y parameters are
not used.

Restriction: The Interface Script can contain only one UI_DIALOG command.

UI_PAGE
UI_PAGE page_number

Page directive, defines the page that the interface elements are placed on. Page numbering starts at 1. Moving between pages can be defined in
two different ways. The first method is to use two buttons created with the UI_NEXT and UI_PREV commands. The second way is to create
dynamic page handling using the UI_CURRENT_PAGE command.
If there is no UI_PAGE command in the Interface Script, each element will be placed on the first page by default.

Warning: Any break of continuity in the page list forces the insertion of a new page without buttons, and therefore no possibility to go to
any other page from there.

Non-Geometric Scripts

224 GDL Reference Guide

UI_CURRENT_PAGE
UI_CURRENT_PAGE index

Definition of the current tabpage to display.
Warning: Jumping to a non-existent page forces the insertion of a new page without buttons and controls, and therefore there is no
possibility to go to any other page from there.

index: valid index of the UI_PAGE to display

UI_BUTTON
UI_BUTTON type, text, x, y, width, height [, id [, url]]

UI_PICT_BUTTON type, text, picture_reference, x, y, width, height [, id [, url]]

Button definition on current page. Buttons can be used for various purposes: moving from page to page, opening a web page or performing
some parameter-script defined action. Buttons can contain text or a picture.
type: type of the button as follows

UI_PREV: if pressed, the previous page is displayed
UI_NEXT: if pressed, the next page is displayed
UI_FUNCTION: if pressed, the GLOB_UI_BUTTON_ID global variable is set to the button id specified in expression
UI_LINK: if pressed, the URL in expression is opened in the default web browser

text: the text that should appear on the text type button; picture buttons omit this parameter
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of the library part
x, y: the position of the button
width, height: width and height of the button in pixels
id: an integer unique identifier
url: a string containing a URL
UI_PREV and UI_NEXT buttons are disabled if the previous/next page is not present. If these buttons are pushed, the gs_ui_current_page
parameter of the library part is set to the index of the page to show - if there's a parameter with this name.

Non-Geometric Scripts

GDL Reference Guide 225

Example:
! UI script

UI_CURRENT_PAGE gs_ui_current_page

UI_BUTTON UI_FUNCTION, "Go to page 9", 200,150, 70,20, 3

UI_BUTTON UI_LINK, "Visit Website", 200,180, 100,20, 0,

"http://www.graphisoft.com"

! parameter script

if GLOB_UI_BUTTON_ID = 3 then

parameters gs_ui_current_page = 9, ...

endif

UI_SEPARATOR
UI_SEPARATOR x1, y1, x2, y2

Generates a separator rectangle. The rectangle becomes a single (vertical or horizontal) separator line if x1 = x2 or y1 = y2
x1, y1: upper left node coordinates (starting point coordinates of the line)
x2, y2: lower right node coordinates (endpoint coordinates of the line)

UI_GROUPBOX
UI_GROUPBOX text, x, y, width, height

A groupbox is a rectangular separator. It can be used to visually group logically related parameters.
text: the title of the groupbox
x, y: the position of upper left corner
width, height: width and height in pixels

Non-Geometric Scripts

226 GDL Reference Guide

UI_PICT
UI_PICT picture_reference, x, y [,width, height[, mask]]

Picture element in the dialog box. The picture file must be located in one of the loaded libraries.
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of

the library part.x, y: position of the top left corner of the picture.
width, height: optional width and height in pixels; by default, the picture’s original width and height values will be used.
mask = alpha + distortion
See “PICTURE”element for full explanation.

UI_STYLE
UI_STYLE fontsize, face_code

All the UI_OUTFIELDs and UI_INFIELDs generated after this keyword will represent this style until the next UI_STYLE statement.
fontsize: one of the following font size values

0: small
1: extra small
2: large

face_code: similar to the STYLE definition, but the values cannot be used in combination.
0: normal
1: bold
2: italic
4: underline
8: outline
16: shadow

Non-Geometric Scripts

GDL Reference Guide 227

UI_OUTFIELD
UI_OUTFIELD expression,x,y,width,height [, flags]]

Generates a static text.
expression: numerical or string expression
x, y: position of the text block’s top left corner
width, height: width and height of the pixels
flags = j1 + 2*j2 + 4*j3

j1 (1) and j2 (2) - horizontal alignment
j1 = 0, j2 = 0 : Aligns to the left edge (default)
j1 = 1, j2 = 0 : Aligns to the right edge
j1 = 0, j2 = 1 : Aligns to the center
j1 = 1, j2 = 1 : Not used
j3 (4): - grayed text

UI_INFIELD
UI_INFIELD "name", x, y, width, height [,

method, picture_name,
images_number,
rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1,
...,
expression_imagen, textn]

UI_INFIELD{2}
UI_INFIELD{2} name, x, y, width, height [,

method, picture_name,
images_number,
rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1,
...,
expression_imagen, textn]

Non-Geometric Scripts

228 GDL Reference Guide

UI_INFIELD{3}
UI_INFIELD{3} name, x, y, width, height [,

method, picture_name,
images_number,
rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1, value_definition1,
...,
expression_imagen, textn, value_definitionn]

Generates an edit text or a pop-up menu for the parameter input. A pop-up is generated if the parameter type is value list, material, fill, line type
or pencolor.
If the optional parameters of the command are present, value lists can be alternatively displayed as thumbnail view fields. Different thumbnail
control types are available. They display the specified images and associated texts and allow the selection of one single item at a time, just like in
a pop-up menu.
In the version 1 and 2 infield, the thumbnail items and the value list items are associated by indices.
The version 3 infield defines value association which binds the thumbnail items to value list items of the associated parameter. If a value defined
in a thumbnail item isn't present in the parameter's value list, it won't be displayed in the control.
The Interface Script is rebuilt with the new value after any parameter is modified.
name: parameter name as string expression for UI_INFIELD or parameter name with optional actual index values if array for

UI_INFIELD{2}
x, y: the position of the edit text, pop-up or control
width, height: width and height in pixels
method: the type of the control

1: List view control

Non-Geometric Scripts

GDL Reference Guide 229

2: Popup menu control

3: Popup icon radio control

4: Push icon radio control

5: Pushbutton with text

6: Pushbutton with picture

Non-Geometric Scripts

230 GDL Reference Guide

7: Checkbox with text

8. Popup list with text

picture_name: name of the common image file containing a matrix of concatenated images, or empty string
images_number: number of images in the matrix, for boolean parameters it can be 0 or 2
rows_number: number of rows of the matrix
cell_x, cell_y: width and height of a cell within the thumbnail view field, including image and text
image_x, image_y: width and height of the image in the cell
expression_imagei: index of image number i in the matrix, or individual file name. If a common image file name was specified,

indices must be used here. Combination of indices and individual file names does not work.
texti: text in cell number i
value_definitioni: value definition which matches the cell with a value list item by value:
expression: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered

Non-Geometric Scripts

GDL Reference Guide 231

Example 1:
IF c THEN
UI_DIALOG "Hole definition parameters"
UI_OUTFIELD "Type of hole:",15,40,180,20
UI_INFIELD "D",190,40,105,20
IF D="Rectangular" THEN

UI_PICT "rect.pict",110,33,60,30
UI_OUTFIELD "Width of hole",15,70,180,20
UI_INFIELD "E", 190,70,105,20
UI_OUTFIELD "Height of hole",15,100,180,20
UI_INFIELD "F", 190,100,105,20
UI_OUTFIELD "Distance between

holes",15,130,180,20
UI_INFIELD "G", 190,130,105,20

ELSE
UI_PICT "circle.pict",110,33,60,30
UI_OUTFIELD "Diameter of hole

circle",15,70,180,20
UI_INFIELD "J", 190,70,105,20
UI_OUTFIELD "Distance of hole

centers",15,100,180,20
UI_INFIELD "K", 190,100,105,20
UI_OUTFIELD "Resolution of hole

circle",15,130,180,20
UI_INFIELD "M", 190,130,105,20

ENDIF
UI_OUTFIELD "Number of holes",15,160,180,20
UI_INFIELD "I", 190,160,105,20

ENDIF
UI_SEPARATOR 50,195,250,195
UI_OUTFIELD "Material of beam", 15,210,180,20
UI_INFIELD "MAT", 190,210,105,20
UI_OUTFIELD "Pen of beam", 15,240,180,20
UI_INFIELD "P", 190,240,105,20

Non-Geometric Scripts

232 GDL Reference Guide

Example 2:

! Parameter Script:
VALUES "myParameter" "Two", "Three", "Five", CUSTOM

! Interface Script:
px = 80
py = 60
cx = px + 3
cy = py + 25

UI_INFIELD{3} "myParameter", 10, 10, 4 * cx + 21, cy + 5,
1, "myPicture", 6,
1, cx, cy, px, py,
1, "1 - one", "One",
2, "2 - two", "Two",
3, "3 - three", "Three",
4, "4 - four", "Four",
5, "5 - five", "Five",
6, "custom value", CUSTOM

Non-Geometric Scripts

GDL Reference Guide 233

UI_RADIOBUTTON
UI_RADIOBUTTON name, value, text, x, y, width, height
Generates a radio button of a radio button group. Radio button groups are defined by the parameter name. Items in the same group are mutually
exclusive.
name: parameter name with optional actual index values if array
value: parameter is set to this value if this radio button is set
text: this text is displayed beside the radio button
x, y: the position of the radio control
width, height: width and height in pixels
Example:
UI_RADIOBUTTON "ceilingPlan", 0, `Floor Plan`, 10, 140, 100, 20
UI_RADIOBUTTON "ceilingPlan", 1, `Ceiling Plan`, 10, 160, 100, 20

Non-Geometric Scripts

234 GDL Reference Guide

UI_TOOLTIP
UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]
UI_INFIELD "name", x, y, width, height [, extra parameters ...] [UI_TOOLTIP tooltiptext]
UI_INFIELD{2} name, x, y, width, height [, extra parameters ...] [UI_TOOLTIP tooltiptext]
UI_INFIELD{3} name, x, y, width, height [, extra parameters ...] [UI_TOOLTIP tooltiptext]
UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]
UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]
UI_PICT expression, x, y [,width, height [, mask]] [UI_TOOLTIP tooltiptext]
Defines the tooltip for the control on the user interface page.Tooltip is available for buttons, infields, outfields and pictures.
tooltiptext: the text to display as tooltip for the control.

GDL Reference Guide 235

EXPRESSIONS AND FUNCTIONS
All parameters of GDL shapes can be the result of calculations. For example, you can define that the height of the cylinder is five times the radius of the cylinder, or prior
to defining a cube, you can move the coordinate system in each direction by half the size of the cube, in order to have the initial origin in the center of the cube rather than
in its lower left corner. To define these calculations, GDL offers a large number of mathematical tools: expressions, operators and functions.

EXPRESSIONS

You can write compound expressions in GDL statements. Expressions can be of numerical and string type. They are constants, variables,
parameters or function calls and any combination of these in operators. Round bracket pairs (()) (precedence 1) are used to override the default
precedence of the operators.
Simple type variables can be given numerical and string values, even in the same script, and can be used in numerical and string type expressions
respectively. Operations resulting in strings CANNOT be used directly as macro names in macro calls, or as attribute names in material, fill, line
type or style definitions. Variables given a string value will be treated as such and can be used wherever string values are required. If later in the
script the same variable is given a numerical value, it will be usable in numerical expressions only until it is given a string value again. Where
possible, in the precompilation process the type of the expressions is checked.
GDL supports one and two dimensional arrays. Variables become arrays after a declaration statement, in which their dimensions are specified.

DIM
DIM var1[dim_1], var2[dim_1][dim_2], var3[],

var4[][], var5[dim_1][],
var5[][dim_2]

After the DIM keyword there can be any number of variable names separated by commas. var1, var2, ... are the array names, while the numbers
between the brackets represent the dimensions of the array (numerical constants). Variable expressions cannot be used as dimensions. If they are
missing, the array is declared to be dynamic (one or both dimensions).
Library part parameters can also be arrays. Their actual dimensions are specified in the library part dialog. Parameter arrays do not have to be
declared in the script and they are dynamic by default. When referencing the library part using a CALL statement, the actual values of an array
parameter can be an array with arbitrary dimensions.
The elements of the arrays can be referenced anywhere in the script but if they are variables, only after the declaration.
var1[num_expr] or var1
var2[num_expr1][num_expr2] or var2[num_expr1]

or var2
Writing the array name without actual indices means referencing the whole array (or a line of a two-dimensional array) which is accepted in some
cases (CALL, PRINT, LET, PUT, REQUEST, INPUT, OUTPUT, SPLIT statements). For dynamic arrays there is no limitation for the actual
index value. During the interpretation, when a non-existing dynamic array element is given a value, the necessary quantity of memory is allocated
and the missing elements are all set to 0 (numerical).

Expressions and Functions

236 GDL Reference Guide

Warning! This may cause an unexpected out of memory error in some cases. Each index - even of a possibly wrong, huge value - is
considered valid, since the interpreter is unable to detect the error condition. A non-existing dynamic array element is 0 (numerical).

Arrays having a fixed dimension are checked for the validity of the actual index on the fixed dimension. Array variables with fixed length cannot
accept dynamic array values in assignments. However, dynamic arrays that are given whole array values will take on those values. This also
applies to some statements where whole array references can be used as return parameters. (REQUEST, INPUT, SPLIT).
Array elements can be used in any numerical or string expression. They can be given string or numerical values.
Indices start with 1, and any numerical expression can be used as an index.
Array elements can be of different simple types (numerical, string, group). The type of the whole array (‘main’ type) is the type of its first
element ([1] or [1][1]). Parameter and global variable arrays cannot be of mixed type.

VARDIM1(expr)
VARDIM1(expr)

VARDIM2(expr)
VARDIM2(expr)

These functions return as integers the actual dimension values for the (array) expression specified as a parameter. They must be used if you want
to handle correctly all actual elements of a dynamic array or an array parameter. If no element of a dynamic array was previously set, the return
value is 0. For one-dimensional arrays VARDIM2 returns 0.

Expressions and Functions

GDL Reference Guide 237

Examples for numeric expressions:
Z
5.5
(+15)
-X
A*(B+C)
SIN(X+Y)*Z
A+R*COS(I*D)
5' 4"
SQR (x^2 + y^2) / (1 - d)
a + b * sin (alpha)
height * width
Examples for string expressions:
"Constant string"
name + STR ("%m", i) + "." + ext
string_param <> "Mode 1"
Examples for expressions using array values:
DIM tab [5], tab2 [3][4] ! declaration
tab [1] + tab [2]
tab2 [2][3] + A
PRINT tab

DIM f1 [5], v1[], v2[][]
v1[3] = 3 !v1[1] = 0, v1[2] = 0, array of 3
 ! elements
v2[2][3] = 23 ! all other elements(2 X 3) = 0
PRINT v1, v2

DIM f1 [5], v1[], v2[][]
FOR i = 1 TO VARDIM1(f1)
 f1 [i] = i
NEXT I
v1 = f1
v2 [1] = f1
PRINT v1, v2

Expressions and Functions

238 GDL Reference Guide

OPERATORS

The operators below are listed in order of decreasing precedence. The evaluation of an expression begins with the highest precedence operator
and from left to right.

Arithmetical Operators
^ (or **) Power of precedence 2
* Multiplication precedence 3
/ Division precedence 3
MOD (or%) Modulo (remaining part)precedence 3

X MOD Y = X - Y * INT (X/Y)
+ Addition precedence 4
- Subtraction precedence 4

Note: + (addition) can also be applied to string expressions: the result is the concatenation of the strings.
The result of the '/' (Division) is always a real number, while the result of the other operations depends on the type of the operands: if all
operands are integer, the result will be integer, otherwise real.

Relational Operators
= Equal precedence 5
< Less than precedence 5
> Greater than precedence 5
<= Less than or equal precedence 5
>= Greater than or equal precedence 5
<> (or #) Not equal precedence 5

Note: These operators can be used between any two string expressions also (string comparison is case sensitive). The result is an integer, 1 or
0. There is not recommended to use the '=' (Equal), '<=' (Less than or equal), '>=' (Greater than or equal), '<>' (or #) (Not equal) operators
with real operands, as these operations can result in precision problems.

Boolean Operators
AND (or &) Logical and precedence 6

OR (or |) Logical inclusive or precedence 7

EXOR (or @) Logical exclusive or precedence 8

Note: Boolean operators work with integer numbers. In consequence, 0 means “false”, while any other number means “true”. The value of
a logical expression is also integer, i.e., 1 for “true” and 0 for “false”. There is not recommended to use boolean operators with real operands,
as these operations can result in precision problems.

Expressions and Functions

GDL Reference Guide 239

FUNCTIONS

Arithmetical Functions

ABS

ABS (x) Returns the absolute value of x (integer if x integer, real otherwise).

CEIL

CEIL (x)Returns the smallest integral value thatis not smaller than x (always integer).
(e.g., CEIL(1.23) = 2; CEIL (-1.9) = -1).

INT

INT (x) Returns the integral part of x (always integer). (e.g., INT(1.23) = 1, INT(-1.23) =
-2).

FRA

FRA (x) Returns the fractional part of x (integer 0 if x integer, real otherwise). (e.g.,
FRA(1.23) = 0.23, FRA(-1.23) = 0.77).

ROUND_INT

ROUND_INT (x) Returns the rounded integer part of x. The 'i = ROUND_INT (x)' expression is
equivalent with the following script:
IF x < 0.0 THEN i = INT (x - 0.5) ELSE i = INT (x + 0.5)

SGN

SGN (x) Returns +1 integer if x positive, -1 integer if x negative, otherwise 0 integer.

SQR

SQR (x) Returns the square root of x (always real).

Expressions and Functions

240 GDL Reference Guide

Circular Functions
These functions use degrees for arguments (COS, SIN, TAN) and for return values (ACS, ASN, ATN).

ACS

ACS (x) Returns the arc cosine of x. (-1.0 <= x <= 1.0; 0° <= ACS(x) <= 180°).

ASN

ASN (x) Returns the arc sine of x. (-1.0 <= x <= 1.0; -90° <= ASN(x) <= 90°).

ATN

ATN (x) Returns the arc tangent of x. (-90° <= ATN(x) <= 90°).

COS

COS (x) Returns the cosine of x.

SIN

SIN (x) Returns the sine of x.

TAN

TAN (x) Returns the tangent of x.

PI

PI Returns Ludolph's constant. (p = 3.1415926...).

Note: All return values are real.

Transcendental Functions

EXP

EXP (x) Returns the x th power of e (e = 2.7182818).

LGT

LGT (x) Returns the base 10 logarithm of x.

Expressions and Functions

GDL Reference Guide 241

LOG

LOG (x) Returns the natural logarithm of x.

Note: All returned values are real.

Boolean Functions

NOT

NOT (x) Returns false (=0 integer) if x is true (<>0), and true (=1 integer) if x is false
(=0)(logical negation).

Note: Parameter value should be integer.

Statistical Functions

MIN

MIN (x1,x2, ... xn) Returns the smallest of an unlimited number of arguments.

MAX

MAX (x1,x2, ... xn) Returns the largest of an unlimited number of arguments.

RND

RND (x) Returns a random value between 0.0 and x (x > 0.0) always real.

Bit functions

BITTEST

BITTEST (x, b)

Returns 1 if the b bit of x is set, 0 otherwise.

BITSET

BITSET (x, b [, expr])

expr can be 0 or different, the default value is 1. Sets the b bit of x to 1 or 0 depending on the value of the specified expression, and returns the
result. Parameter value should be integer, returned value is integer.

Expressions and Functions

242 GDL Reference Guide

Special Functions
Special functions (besides global variables) can be used in the script to communicate with the program. They either ask the current state and
different preferences settings of the program, or refer to the current environment of the library part. Request calls can also be used to
communicate with GDL extensions.
There are two types of special functions: requests and the IND function:
REQ (parameter_string)

REQUEST (question_name, name | index, variable1 [, variable2,...])

IND (MATERIAL, name_string)

IND (FILL, name_string)

IND (LINE_TYPE, name_string)

IND (STYLE, name_string)

IND (TEXTURE, name_string)

The return value of the requests is always the number of succesfully retrieved values (integer), while the type of the retrieved values is defined by
each request in part.
IND functions return an attribute index (integer) value.

String Functions

STR

STR (numeric_expression, length, fractions)

STR

STR (format_string, numeric_expression)

STR{2}

STR{2}(format_string, numeric_expression [, exta_accuracy_string])

The first form of the function creates a string from the current value of the numeric expression. The minimum number for numerical characters
in the string is length, while fractions represents the numbers following the floating point. If the converted value has more than length
characters, it is expanded as required. If it has fewer characters, it is padded on the left (length > 0) or on the right (length < 0).

Expressions and Functions

GDL Reference Guide 243

Example:
A=4.5
B=2.345
TEXT2 0, 2, STR(A, 8, 2) ! 4.50
TEXT2 0, 1, STR(B, 8, 2) ! 2.34
TEXT2 0, 0, STR(A*B, 8, 2)! 10.55
In the second and third case, the format_string can either be a variable or a constant. If the format is empty, it is interpreted as meters, with an
accuracy of three decimals (display 0 wholes). If the extra accuracy flags are set in the format_string, then the STR{2}function will return the
corresponding extra accuracy string in the 3rd parameter.
The format_string can be as seen below:
%[0 or more flags][field_width][.precision] conv_spec
flags (for m, mm, cm, e, df, di, sqm, sqcm, sqf, sqi, dd, gr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal):
(none) right justify (default)
- left justify
+ explicit plus sign
(space) in place of a + sign
'*' 0 extra accuracy Off (default)
'*' 1 extra accuracy .5
'*' 2 extra accuracy .25
'*' 3 extra accuracy .1
'*' 4 extra accuracy .01
'*' 5 extra accuracy .5
'*' 6 extra accuracy .25
flags (for m, mm, cm, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal):
'#' don't display 0 wholes
flags (for ffi, fdi, fi):
'0' display 0 inches
flags (for m, mm, cm, fdi, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal):
'~' hide 0 decimals (effective only if the '#' flag is not specified)
'^' do not change decimal separator and digit grouping characters (if not specified, these characters will be replaced as set in the

current system)
field_width: unsigned decimal integer, the minimum number of characters to generate
precision: unsigned decimal integer, the number of fraction digits to generate

Expressions and Functions

244 GDL Reference Guide

conv_spec (conversion specifier):
e: exponential format (meter)
m: meters
mm: millimeters
cm: centimeters
ffi: feet & fractional inches
fdi: feet & decimal inches
df: decimal feet
fi: fractional inches
di: decimal inches
pt: points

for areas:
sqm: square meters
sqcm: square centimeters
sqmm: square millimeters
sqf: square feet
sqi: square inches

for angles:
dd: decimal degrees
dms: degrees, minutes, seconds
gr: grads
rad: radians
surv: surveyors unit

for volumes:
cum: cubic meters
l: liters
cucm: cubic centimeters
cumm: cubic millimeters
cuf: cubic feet
cui: cubic inches
cuy: cubic yards
gal: gallons

Expressions and Functions

GDL Reference Guide 245

Examples:
h = 23
nr = 0.345678
TEXT2 0, h, STR ("%m", nr) !0.346
TEXT2 0, h-1, STR ("%#10.2m", nr) !35
TEXT2 0, h-2, STR ("%.4cm", nr) !34.5678
TEXT2 0, h-3, STR ("%12.4cm", nr)!34.5678
TEXT2 0, h-4, STR ("%.6mm", nr)!345.678000
TEXT2 0, h-5, STR ("%+15e", nr)!+3.456780e-01
TEXT2 0, h-6, STR ("%ffi", nr) !1'-2"
TEXT2 0, h-7, STR ("%0.16ffi", nr) !1'-1 5/8"
TEXT2 0, h-8, STR ("% .3fdi", nr) ! 1'-1.609"
TEXT2 0, h-9, STR ("% -10.4df", nr) ! 1.1341'
TEXT2 0, h-10, STR ("%0.64fi", nr) !13 39/64"
TEXT2 0, h-11, STR ("%+12.4di", nr)!+13.6094"
TEXT2 0, h-12, STR ("%#.3sqm", nr) ! 346
TEXT2 0, h-13, STR ("%+sqcm", nr) !+3,456.78
TEXT2 0, h-14, STR ("% .2sqmm", nr)! 345,678.00
TEXT2 0, h-15, STR ("%-12sqf", nr) !3.72
TEXT2 0, h-16, STR ("%10sqi", nr)! 535.80
TEXT2 0,h-17, STR("%.2pt", nr) !0.35
alpha = 88.657
TEXT2 0, h-18, STR ("%+10.3dd", alpha)!+88.657°
TEXT2 0, h-19, STR ("%.1dms", alpha)!88°39'
TEXT2 0, h-20, STR ("%.2dms", alpha) !88°39'25"
TEXT2 0, h-21, STR ("%10.4gr", alpha) ! 98.5078G
TEXT2 0, h-22, STR ("%rad", alpha) !1.55R
TEXT2 0, h-23, STR ("%.2surv", alpha) !N 1°20'35" E

SPLIT

SPLIT (string, format, variable1 [, variable2, ..., variablen])

Splits the string parameter according to the format in one or more numeric or string parts. The split process stops when the first non-matching
part is encountered. Returns the number of successfully read values (integer).
string: the string to be split

Expressions and Functions

246 GDL Reference Guide

format: any combination of constant strings, %s and %n -s. Parts in the string must fit the constant strings, %s denotes any string
value delimited by spaces or tabs, while %n denotes any numeric value.

variablei: the variable names to store the split string parts.

Expressions and Functions

GDL Reference Guide 247

Example:
ss = "3 pieces 2x5 beam"
n = SPLIT (ss, "%n pieces %nx%n %s", num, ss1, size1, ss2, size2, name)
IF n = 6 THEN
 PRINT num, ss1, size1, ss2, size2, name ! 3 pieces 2 x 5 beam
ELSE
 PRINT "ERROR"
ENDIF

STW

STW (string_expression)

Returns the (real) width of the string in meters displayed in the current style. The width in meters, at current scale, is STW (string_expression) /
1000 * GLOB_SCALE.
Example:

DEFINE STYLE "own" "Monaco", 180000 / GLOB_SCALE, 1, 0
SET STYLE "own"
string = "abcd"
width = STW (string) / 1000 * GLOB_SCALE
n = REQUEST ("Height_of_style", "own", height)
height = height / 1000 * GLOB_SCALE
text2 0,0, string
rect2 0,0, width, -height

STRLEN
STRLEN (string_expression)

Returns the (integer) length of the string (the number of characters)

STRSTR

STRSTR (string_expression1, string_expression2)

Returns the (integer) position of the first appearence of the second string in the first string. If the first string doesn’t contain the second one, the
function returns 0.

Expressions and Functions

248 GDL Reference Guide

STRSUB

STRSUB (string_expression, start_position, characters_number)

Returns a substring of the string parameter that begins at the position given by the start_position parameter and its length is characters_number
characters.
Example:
ss = ""

n = REQUEST ("Linear_dimension", "",ss)
unit = ""

IF STRSTR (ss, "m") > 0 THEN unit = "m"
IF STRSTR (ss, "mm") > 0 THEN unit = "mm"
IF STRSTR (ss, "cm") > 0 THEN unit = "cm"
TEXT2 0, 0, STR (ss, a) + " " + unit !1.00 m
string = "Flowers.PICT"
len = STRLEN (string)
n = STRSTR (string, ".")
TEXT2 0, -1, STRSUB (string, 1, n - 1) !Flowers
TEXT2 0, -2, STRSUB (string, len - 4, 5) !.PICT

GDL Reference Guide 249

CONTROL STATEMENTS
This chapter reviews the GDL commands available for controlling loops and subroutines in scripts and introduces the concept of buffer manipulation designed to store
parameter values for further use. It also explains how to use objects as macro calls and how to display calculated expressions on screen.

FLOW CONTROL STATEMENTS

FOR
FOR variable_name = initial_value TO end_value [STEP step_value]

First statement of a FOR loop. If the STEP keyword and the step_value are missing, the step is assumed to be 1.
A global variable is not allowed as a loop control variable.
Example:
FOR I=1 TO 10 STEP 2
 PRINT I
NEXT I

NEXT
NEXT variable_name

Last statement of a FOR loop.
The loop variable varies from the initial_value to the end_value by the step_value increment (or decrement) in each execution of the body of the
loop (statements between the FOR and NEXT statements). If the loop variable exceeds the value of the end_value, the program executes the
statement following the NEXT statement.

Note: Changing the step_value during the execution of the loop has no effect.

Control Statements

250 GDL Reference Guide

The two program fragments below are equivalent:
! 1st
 A = B
1:IF C > 0 AND A > D OR C < 0 AND A < D THEN 2
 PRINT A
 A = A + C
 GOTO 1
2:
! 2nd
 FOR A = B TO D STEP C
 PRINT A
 NEXT A
The above example shows that step_value = 0 causes an infinite loop.
Only one NEXT statement is allowed after a FOR statement. You can exit the loop with a GOTO (or IF ... GOTO) statement and to return
after leaving, but you cannot enter a loop skipping the FOR statement.

DO
DO

[statment1
statement2
...
statementn]

WHILE condition
The statements between the keywords are executed as long as the condition is true.
The condition is checked after each execution of the statements.
WHILE condition DO

[statement1
statement2
...
statementn]

ENDWHILE
The statements between the keywords are executed as long as the condition is true.
The condition is checked before each execution of the statements.

Control Statements

GDL Reference Guide 251

REPEAT
[statement1
statement2
...
statementn]

UNTIL condition
The statements between the keywords are executed until the condition becomes true.
The condition is checked after each execution of the statements.
Example:
The following four sequences of GDL commands are equivalent:
! 1st
FOR i = 1 TO 5 STEP 1
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
NEXT i
! 2nd
i = 1
DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
WHILE i <= 5
! 3rd
i = 1
WHILE i <= 5 DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
ENDWHILE
! 4th
i = 1
REPEAT
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
UNTIL i > 5

Control Statements

252 GDL Reference Guide

IF
IF condition THEN label

IF condition GOTO label

IF condition GOSUB label

Conditional jump statement. If the value of the condition expression is 0, the command has no effect, otherwise execution continues at the label.
Examples:
IF A THEN 28
IF I > J GOTO 200+I*J
IF I > 0 GOSUB 9000
IF condition THEN statement [ELSE statement]
or
IF condition THEN [statement1
 statement2
 ...
 statementn]
 [ELSE
 statementn+1
 statementn2
 ...
 statementn+m]
ENDIF
If you write only one command after keywords THEN and/or ELSE in the same row, there is no need for ENDIF. A command after THEN or
ELSE in the same row means a definite ENDIF.
If there is a new row after THEN, the successive commands (all of them until the keyword ELSE or ENDIF) will only be executed if the
expression in the condition is true (other than zero). Otherwise, the commands following ELSE will be carried out. If the ELSE keyword is
absent, the commands after ENDIF will be carried out.

Control Statements

GDL Reference Guide 253

Example:
IF a = b THEN height = 5 ELSE height = 7
IF needdoors THEN
 CALL "door_macro" PARAMETERS
 ADDX a
ENDIF
IF simple THEN
 HOTSPOT2 0, 0
 RECT2 a, 0, 0, b
ELSE PROJECT2 3, 270, 1
IF name = "Sphere" THEN
 ADDY b
 SPHERE 1
ELSE
 ROTX 90
 TEXT 0.002, 0, name
ENDIF

GOTO
GOTO label

Unconditional jump statement. The program executes a branch to the statement denoted by the value of the label (numerical or string). Variable
label expressions can slow down interpretation due to runtime jumping address determination.
Example:
GOTO K+2

GOSUB
GOSUB label

Internal subroutine call where the label is the entry point of the subroutine. Label value can be any numerical or string expression. Variable label
expressions can slow down interpretation due to runtime jumping address determination.

RETURN
RETURN

Return from an internal subroutine.

Control Statements

254 GDL Reference Guide

END / EXIT
END / EXIT [v1, v2, ..., vn]

End of the current GDL script. The program terminates or returns to the level above. It is possible to use several ENDs or EXITs in a GDL
file. If the optional list of values is specified, the current script will pass these return values to its caller.
See the description of receiving returned parameters at “CALL” on page 258.

BREAKPOINT

BREAKPOINT expression

With this command, you can specify a breakpoint in the GDL script. The GDL debugger will stop at this command if the value of the
parameter (a numeric expression) is true (1) and the Enable Breakpoints option of the debugger is checked. In “normal” execution mode, the
GDL interpreter simply steps over this command.

PARAMETER BUFFER MANIPULATION

The parameter buffer is a built-in data structure that may be used if some values (coordinates, for example) change after a definite rule that can
be described using a mathematical expression. This is useful if, for instance, you want to store the current values of your variables.

The parameter buffer is an infinitely long array in which you can store numeric values using the PUT command. The PUT command stores the
given values at the end of the buffer. These values can later be used (by the GET and USE commands) in the order in which they were entered
(i. e., the first stored value will be the first one used). A GET(n) or USE(n) command is equivalent with n values separated by commas. This way,
they can be used in any GDL parameter list where n values are needed.

PUT

PUT expression [, expression, ...]

Store the given values in the given order in the internal parameter buffer.

Control Statements

GDL Reference Guide 255

GET

GET (n)

Use the next n values from the internal parameter buffer and then disregard them.

USE

USE (n)

Use the next n values from the internal parameter buffer without deleting them. Following USE and GET functions can use the same parameter
sequence.

NSP

NSP

Returns the number of stored parameters in the internal buffer.
Example for using the parameter buffer:

R=2: B=6: C=4: D=10
N=12

S=180/N
FOR T=0 TO 180 STEP S
 PUT R+R*COS(T), C-R*SIN(T), 1
NEXT T

Control Statements

256 GDL Reference Guide

FOR I=1 TO 2
 EXTRUDE 3+NSP/3, 0,0,D, 1+16,
 0, B, 0,
 2*R, B, 0,
 USE(NSP),
 0, B, 0
 MULY -1
NEXT I
DEL 1
ADDZ D
REVOLVE 3+NSP/3, 180, 0,
 0, B, 0,
 2*R, B, 0,
 GET(NSP),
 0, B, 0

Control Statements

GDL Reference Guide 257

The full description:
R=2: B=6: C=4: D=10

FOR I=1 TO 2
 EXTRUDE 16, 0,0,D, 1+16,
 0, B, 0,
 2*R, B, 0,
 2*R, C, 1,
 R+R*COS(15), C-R*SIN(15), 1,
 R+R*COS(30), C-R*SIN(30), 1,
 R+R*COS(45), C-R*SIN(45), 1,
 R+R*COS(60), C-R*SIN(50), 1,
 R+R*COS(75), C-R*SIN(75), 1,
 R+R*COS(90), C-R*SIN(90), 1,
 R+R*COS(105), C-R*SIN(105), 1,
 R+R*COS(120), C-R*SIN(120), 1,
 R+R*COS(135), C-R*SIN(135), 1,
 R+R*COS(150), C-R*SIN(150), 1,
 R+R*COS(165), C-R*SIN(165), 1,
 0, B, 1,
 0, B, 0
 MULY -1
NEXT I
DEL 1
ADDZ D
REVOLVE 16, 180, 0,
 0, B, 0,
 2*R, B, 0,
 2*R, C, 1,
 R+R*COS(15), C-R*SIN(15), 1,
 R+R*COS(30), C-R*SIN(30), 1,
 R+R*COS(45), C-R*SIN(45), 1,
 R+R*COS(60), C-R*SIN(50), 1,
 R+R*COS(75), C-R*SIN(75), 1,
 R+R*COS(90), C-R*SIN(90), 1,
 R+R*COS(105), C-R*SIN(105), 1,
 R+R*COS(120), C-R*SIN(120), 1,
 R+R*COS(135), C-R*SIN(135), 1,
 R+R*COS(150), C-R*SIN(150), 1,
 R+R*COS(165), C-R*SIN(165), 1,
 0, B, 1,
 0, B, 0

Control Statements

258 GDL Reference Guide

MACRO OBJECTS

Although the 3D objects you may need can always be broken down into complex or primitive elements, sometimes it is desirable to define these
complex elements specifically for certain applications. These individually defined elements are called macros.

CALL

CALL macro_name_string [,parameter_list]

CALL macro_name_string [,] PARAMETERS [name1=value1 , ... namen=valuen][[,]
RETURNED_PARAMETERS r1, r2, ...]

CALL macro_name_string [,] PARAMETERS ALL [name1=value1 , ...
namen=valuen][[,][RETURNED_PARAMETERS r1, r2, ...]

CALL macro_name_string [,]PARAMETERS value1 or DEFAULT [, ... valuem or DEFAULT]

Macro names cannot be longer than 31 characters.
Macro names can be string constants, string variables or parameters. String operations cannot be used with a macro call as a macro name.

Warning: If string variables or parameters are used as macro names, the called macro may not be included in the archive project, unless the
“Include All Parts of Loaded Libraries” option is checked.

The macro name must be put between quotation marks (“,’,`,´,”,’,“,‘), unless it matches the definition of identifiers, i.e., it begins with a letter or
a ‘_’ or ‘~’ character and contains only letters, numbers and the ‘_’ and ‘~’ characters. Otherwise, the quotation marks used in the CALL
statement must be the same at the beginning and at the end, and should be different from any character of the macro name.
A macro name itself also can be used as a command, without the CALL keyword:
macro_name [parameter_list]
macro_name PARAMETERS [name1=value1, ... namen=valuen]
macro_name PARAMETERS ALL
The first type of macro call can be used with simple GDL text files as well as any library part, on the condition that its parameter list contains
only single-letter parameters (A ... Z). This form of macro call can be used for compatibility with previous versions, but we recommend the
second type. The meaning of the parameter list is the following: the value of parameter A will be the first value in the list, the value of parameter
B will be the second value, and so on. If the (library part) macro does not have a single-letter parameter corresponding to the value,
interpretation will continue by skipping this value, but you will get a warning from the program. No string type expressions are allowed with this
method.
The second type can be used with full featured library parts or plain GDL text files. After the PARAMETERS keyword you need to list the
parameter names of the called macro in any sequence, with both an ‘=’ sign and a value for each. You can use string type expressions here, but
only give a string value to string type parameters of the called macro. Array parameters have to be given full array values. If a parameter name in
the parameter list cannot be found in the called macro, you will get an error message. Parameters of the called macro that are not listed in the
macro call will be given their original default values as defined in the library part called as a macro.

Control Statements

GDL Reference Guide 259

The third type can only be used with full featured library parts. In this case there is no need to specify the parameters one by one; all parameters
of the caller are passed to the called macro. For a parameter of the macro which cannot be found in the caller, the default value will be used. If
parameter values are specified one by one, they will override the values coming from the caller or parameters of the called macro left to be
default. Macros can return parameters also in this case. At the caller's side, returned values can be collected using the
RETURNED_PARAMETERS keyword followed by a varialble list. The returned values will be stored in these variables in the order they are
returned in the called macro. The number and the type of the variables specified in the caller and those returned in the macro must not match. If
there are more variables specified in the caller, they will be set to 0 integer. Type compatibility is not checked: the type of the variables specified
in the caller will be set to the type of the returned values. If one of the variables in the caller is a dynamic array, all subsequent values will be
stored in it.
See the syntax of returning parameters at “END / EXIT” on page 254.
A GDL macro has its own environment which depends on its calling order. The current values of the
MODEL, RADIUS, RESOL, TOLER, PEN, LINE_TYPE, MATERIAL, FILL, STYLE, SHADOW
options and the current transformation are all valid in the macro. You can use or modify them, but the modifications will only have an effect
locally. They do not take effect on the level the macro was called from.
Giving parameters to a macro call means an implicit value assignment on the macro’s level.
The parameters A and B are generally used for resizing objects.
The fourth type of macro call can also be used only with full featured library parts. In this case the actual parameter values have to be specified
one by one in the order they are present in the called library part, no value can be missed, except from the end of the list. Using the DEFAULT
keyword in place of a parameter actual value means that the actual value will be the default value stored in the library part. For the missing values
defaults will be used automatically (the number of actual values m can be smaller than the number of parameters). When interpreting this kind of
macro call there is no need to find the parameters by name to assign them the actual value, so even though it is more uncomfortable to use than
the previous ones, a better performance can be achieved.
Examples:
CALL "leg" 2, , 5 ! A = 2, B = 0, C = 5
leg 2, , 5
CALL "door-1" PARAMETERS height = 2, a = 25.5,

name = "Director"
CALL "door-1" PARAMETERS

! use parameter default values
"door-1" PARAMETERS
In summary: whenever you do not need a parameter with a long name or of string type, using the text type GDL can be sufficient. This type of
GDL can only be called with the first type of macro call, since it does not have a parameter list. On the other hand, if you do not wish to limit
your macro parameter names to letters from A to Z, or if you want to include strings in the parameter list, your macro must be a library part and
called according to the second type of GDL syntax.

Control Statements

260 GDL Reference Guide

THE OUTPUT STATEMENT

PRINT

PRINT expression [, expression, ...]

Writes all of its arguments in a dialog box. Arguments can be strings or numeric expressions of any number in any sequence, separated by
commas.
Examples:
PRINT "loop-variable:", I
PRINT J, K-3*L
PRINT "Beginning of interpretation"
PRINT a * SIN (alpha) + b * COS (alpha)
PRINT "Parameter values: ", "a = ", a, ", b = ", b
PRINT name + STR ("%m", i) + "." + ext

FILE OPERATIONS

The following keywords allow you to open external files for reading/writing and to manipulate them by putting/getting values from/to GDL
scripts. This process necessarily involves using special Add-On extensions. Text files can be handled by the “TEXT GDL I/O” Add-On.
Add-Ons for other file types can be developed by third parties.
See also “GDL Text I/O Add-On” in the “Miscellaneous”.

OPEN
OPEN (filter, filename, parameter_string)

filter: string, the name of an existing extension
filename: string, the name of the file
parameter_string: string, it contains the specific separation characters of the operational extension and the mode of opening. Its contents are

interpreted by the extension.
Opens a file as directed. Its return value is a positive integer that will identify the specific file. This value, the channel number, will be the file’s
reference number in succeeding instances. To include the referenced file in the archive project, use the “FILE_DEPENDENCE "name1" [,
"name2", ...]” command with the file name.

Control Statements

GDL Reference Guide 261

INPUT
INPUT (channel, recordID, fieldID, variable1 [, variable2,...])

recordID, fieldID: the string or numeric type starting position of the reading, its contents are interpreted by the extension
The number of given parameters defines the number of values from the starting position read from the file identified by the channel value. The
parameter list must contain at least one value. This function puts the read values into the parameters as ordered. These values can be of numeric
or string type, independent of the parameter type defined for storage.
The return value is the number of the successfully read values. When encountering an end of file character, -1 is returned.

VARTYPE
VARTYPE (expression)

Returns 1 if the type of the expression is numerical, 2 if it is a string.
Useful when reading values in variables with the INPUT command, which can change the type of the variables according to the current values.
The type of these variables is not checked during the compilation process.

OUTPUT
OUTPUT channel, recordID, fieldID, expression1 [, expression2, ...]

recordID, fieldID: the string or numeric type starting position of the writing; its contents are interpreted by the extension.
Writes as many values into the file identified by the channel value from the given position as there are defined expressions. There has to be at
least one expression. The type of values is the same as those of the expressions.

CLOSE
CLOSE channel

Closes the file identified by the channel value.

USING DETERMINISTIC ADD-ONS
The following keywords allow you to call GDL add-ons which provide a deterministic function, i.e. the result of a given operation depends on
the specified paramters only. This process necessarily involves using special Add-On extensions. For example polygon operations can be
executed via the PolyOperations add-on. Add-Ons for other operations can be developed by third parties.
See also “Polygon Operations Extension” in the “Miscellaneous”.

Control Statements

262 GDL Reference Guide

INITADDONSCOPE
INITADDONSCOPE (extension, parameter_string1, parameter_string2)

extension: string, the name of an existing extension
parameter_string1: string, its contents are interpreted by the extension
parameter_string2: string, its contents are interpreted by the extension.
Opens a channel as directed. Its return value is a positive integer that will identify the specific connection. This value, the channel number, will
be the connection’s reference number in succeeding instances.

PREPAREFUNCTION
PREPAREFUNCTION channel, function_name, expression1 [, expression2, ...]

function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.
expression: parameters to be passed for the preparation step.
Sets some values in the add-on as a preparation step for calling a later function.

CALLFUNCTION
CALLFUNCTION (channel, function_name, parameter, variable1 [, variable2,...])

function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension
parameter: input parameter; its contents are interpreted by the extension
variablen: output parameter.
The function named function_name in the add-on specified by channel is called. The parameter list must contain at least one value. This function
puts the returned values into the parameters as ordered. The return value is the number of the successfully set values.

CLOSEADDONSCOPE
CLOSEADDONSCOPE channel

Closes the connection identified by the channel value.

GDL Reference Guide 263

MISCELLANEOUS
GDL can also handle a number of operations on external files through special Add-On applications. The commands used to achieve this are described in this chapter and
illustrated with an example.

GLOBAL VARIABLES
The global variables make it possible to store special values of the model. This allows you to access geometric information about the
environment of the GDL macro. For example, you can access the wall parameters when defining a window which has to fit into the wall. Global
variables are not stacked during macro calls.
For doors, windows, labels and property library parts there is one more possibility to communicate with ArchiCAD through fix named, optional
parameters. These parameters, if present on the library part's parameter list, are set by ArchiCAD. See the list of fix named parameters and more
details in the Basic Library documentation http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/13.

General environment information
GLOB_SCRIPT_TYPE T~ type of current script

1-property script, 2-2D script, 3-3D script, 4-user interface script, 5-parameters script, 6-master script
GLOB_CONTEXT context of appearance

1-library part editor, 2-floor plan, 3-3D view, 4-section/elevation, 5-settings dialog, 6-list, 7 - detail drawing, 8 - layout, 22 - editing feedback mode from the floor plan, 23 - editing
feedback mode from a 3Dview, 24 - editing feedback mode from a section/elevation, 28 - editing feedback mode from a layout, 43 - generating as an operator from a 3D view, 44 -
generating as an operator from a section/elevation, 46 - generating as an operator from a list

GLOB_SCALE A_ drawing scale
according to the current window

GLOB_DRAWING_BGD_PEN pen of the drawing background color
the best matching (printable) pen from the current palette to the background color of the current window

GLOB_NORTH_DIR U~ project North direction
relative to the default project coordinate system according to the settings made in the Sun... dialog

GLOB_WORLD_ORIGO_OFFSET_X
GLOB_WORLD_ORIGO_OFFSET_Y

Position of the project origin relative to the world originn. See “Example illustrating the usage of the GLOB_WORLD_ORIGO_... globals:” on page 284
GLOB_MODPAR_NAME name of the last modified parameter

in the settings dialog or library part editor, including parameters modified through editable hotspots. Valid only in parameter scripts.
GLOB_UI_BUTTON_ID id of the button pushed on the UI page

or 0, if the last action was not the push of a button with id.
GLOB_CUTPLANES_INFO [4] -

array of 4 length values: 1: cutplane height, 2: cutplane top level, 3: cutplane bottom level, 4: absolute display limit, in the library part’s local coordinate system. See details in AC Set
Floor Plan Cutplane dialog.

GLOB_STRUCTURE_DISPLAY structure display detail
informs about the partial structure display option settings (integer): 0: entire structure, 1: core only, 2: without finishes

http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/11

Miscellaneous

264 GDL Reference Guide

Story information

Fly-through information

GLOB_HSTORY_ELEV B_ elevation of the home story
home story is the one the object is placed on

GLOB_HSTORY_HEIGHT Q_ height of the home story
home story is the one the object is placed on

GLOB_CSTORY_ELEV Q~ elevation of the current story
current story is the one currently shown in the Floor Plan window

GLOB_CSTORY_HEIGHT R~ height of the current story
current story is the one currently shown in the Floor Plan window

GLOB_CH_STORY_DIST S~ relative position of the current story to the home story
current story is the one currently shown in the Floor Plan window

GLOB_FRAME_NR N_ current frame number in animation

valid only for animation, -1 for still images
GLOB_FIRST_FRAME O_ first frame index in fly-through

valid only for animation, 0 for still images
GLOB_LAST_FRAME P_ last frame index in fly-through

valid only for animation, 0 for still images
GLOB_EYEPOS_X K~ current camera position (x)

valid only in perspective projection for both animation and still images
GLOB_EYEPOS_Y L~ current camera position (y)

valid only in perspective projection for both animation and still images
GLOB_EYEPOS_Z M~ current camera position (z)

valid only in perspective projection for both animation and still images
GLOB_TARGPOS_X N~ current target position (x)

valid only in perspective projection for both animation and still images
GLOB_TARGPOS_Y O~ current target position (y)

valid only in perspective projection for both animation and still images
GLOB_TARGPOS_Z P~ current target position (z)

valid only in perspective projection for both animation and still images
GLOB_SUN_AZIMUTH sun azimuth

according to the settings in the Sun... dialog box
GLOB_SUN_ALTITUDE sun altitude

according to the settings in the Sun... dialog box

Miscellaneous

GDL Reference Guide 265

General element parameters

Object, Lamp, Door, Window parameters

GLOB_LAYER layer of the element

name of the layer the element is assigned to
GLOB_ID user ID of the element

ID as set in the settings dialog box
GLOB_INTGUID internal GUID of the element

the internal GUID generated by the program (cannot be controlled by the user)
GLOB_ELEVATION J_ base elevation of the element

relative to the home story (excluding door, window: sill height, according to current settings)
GLOB_ELEM_TYPE element type, for labels and property objects contains the type of the parent element

0 - none (individual label), 1-object, 2-lamp, 3-window, 4-door, 5-wall, 6-column, 7-slab, 8-roof, 9-fill, 10-mesh, 11-zone, 12 - beam

SYMB_LINETYPE line type of the library part

applied as the default line type of the 2D symbol
SYMB_FILL fill type of the library part

applied on cut surfaces of library parts in section/elevation windows
SYMB_FILL_PEN pen of the fill of the library part

applied on cut surfaces of library parts in section/elevation windows
SYMB_FBGD_PEN pen of the background of the fill of the library part

applied on cut surfaces of library parts in section/elevation windows
SYMB_SECT_PEN pen of the library part in section

applied on contours of cut surfaces of library parts in section/elevation windows
SYMB_VIEW_PEN L_ default pen of the library part

applied on all edges in 3D window and on edges on view in section/elevation windows
SYMB_MAT M_ default material of the library part

SYMB_POS_X X~ position of the library part (x)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)
SYMB_POS_Y Y~ position of the library part (y)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall) Note: see “Doors and Windows” on page 302 specials for
orientation of Y and Z axes

SYMB_POS_Z Z~ position of the library part (z)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall) Note: see “Doors and Windows” on page 302 specials for
orientation of Y and Z axes

Miscellaneous

266 GDL Reference Guide

Object, Lamp parameters

Object, Lamp, Door, Window parameters, Curtain Wall Accessory - available for listing and
labels only

Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only

SYMB_ROTANGLE W~ rotation angle of the library part

numeric rotation from within the settings dialog is performed around the current anchor point
SYMB_MIRRORED V~ library part mirrored

0-no , 1-yes (mirroring is performed around the current anchor point.) Always 0 for wall ends, except when the origin of the local coordinate system is in a non-rectangular vertex of a
trapezoidal wall’s polygon.

SYMB_A_SIZE nominal length/width of library part

length of object/lamp, width of window/door (fixed parameter), width of accesssory
SYMB_B_SIZE nominal width/height of library parts

width of object/lamp, height of window/door (fixed parameter), height of accessory

SYMB_Z_SIZE nominal height/length of the library part

length of accessory or if a user parameter is named in zzyzx format then it will be used for nominal height, otherwise 0

Miscellaneous

GDL Reference Guide 267

Window, Door and Wall End parameters
WIDO_REVEAL_ON window/door reveal is on

0-reveal is off, 1-reveal is on
WIDO_SILL K_ sill depth of the window/door

Reveal Depth as set in the Reveal tab page of Window/Door Settings dialog box for curved walls: in radial directon at nominal sized opening corner
WIDO_SILL_HEIGHT Window/door nominal sill height
WIDO_RSIDE_SILL_HEIGHT Window/door sill height on the reveal side
WIDO_OPRSIDE_SILL_HEIGHT Window/door sill height on the side opposite to the reveal side
WIDO_RIGHT_JAMB B~ window/door jamb on the right side

as set in the Reveal tab page of Window/Door Settings dialog box
WIDO_LEFT_JAMB window/door jamb on the left side

as set in the Reveal tab page of Window/Door Settings dialog box
WIDO_THRES_DEPTH C~ window/door sill/threshold depth

as set in the Reveal tab page of Window/Door Settings dialog box
WIDO_HEAD_DEPTH D~ window/door head depth

as set in the Reveal tab page of Window/Door Settings dialog box
WIDO_HEAD_HEIGHT Window/door nominal head height
WIDO_RSIDE_HEAD_HEIGHT Window/door head height on the reveal side
WIDO_OPRSIDE_HEAD_HEIGHT Window/door head height on the side opposite to the reveal side
WIDO_REVEAL_SIDE E~ reveal side is opposite to the opening side

1-yes, 0-no - when placing an element, the default value is 0 for windows, 1 for doors
WIDO_FRAME_THICKNESS F~ frame thickness of window/door

when flipping doors/windows, they will be mirrored then relocated automatically by this value
WIDO_POSITION H~ offset of the door/window

angle or distance between the axis of the opening or wall end and the normal vector at the wall’s starting point
WIDO_ORIENTATION window/door opening orientation

left/right - it will work fine only if the door/window was created according to local standards
WIDO_MARKER_TXT window/door marker text

as set in the Window/Door Dimensioning subdialog from within the Door/Window Settings dialog
WIDO_SUBFL_THICKNESS subfloor thickness (sill correction)

as set in the Parameters tab page of the Window/Door Settings dialog box
WIDO_PREFIX window/door sill height prefix

as set in the Window/Door Dimensioning subdialog from within the Door/Window Settings dialog
WIDO_CUSTOM_MARKER window/door custom marker switch

1-parameters can be used in the 2D script while the automatic dimension is not present
WIDO_ORIG_DIST R_ distance of the local origin from the center of curvature of the wall

distance of the local origin from the centerpoint of the curved wall, 0 for straight walls. Negative for wall ends 0 at the ending point of the curved wall.
WIDO_PWALL_INSET parapet wall inset

Miscellaneous

268 GDL Reference Guide

Window, Door parameters - available for listing and labels only

Lamp parameters - available for listing and labels only

WIDO_RSIDE_WIDTH Window/door opening width on the reveal side

WIDO_OPRSIDE_WIDTH Window/door opening width on the side opposite to the reveal side

WIDO_RSIDE_HEIGHT Window/door opening height on the reveal side

WIDO_OPRSIDE_HEIGHT Window/door opening height on the side opposite to the reveal side

WIDO_RSIDE_SURF Window/door opening surface on the reveal side

WIDO_OPRSIDE_SURF Window/door opening surface on the side opposite to the reveal side

WIDO_N_RSIDE_WIDTH Nominal window/door opening width on the reveal side

WIDO_N_OPRSIDE_WIDTH Nominal window/door opening width on the side opposite to the reveal side

WIDO_N_RSIDE_HEIGHT Nominal window/door opening height on the reveal side

WIDO_N_OPRSIDE_HEIGHT Nominal window/door opening height on the side opposite to the reveal side

WIDO_N_RSIDE_SURF Nominal window/door opening surface on the reveal side

WIDO_N_OPRSIDE_SURF Nominal window/door opening surface on the side opposite to the reveal side

WIDO_VOLUME Window/door opening volume

WIDO_GROSS_SURFACE Window/door opening nominal surface

WIDO_GROSS_VOLUME Window/door opening nominal volume

LIGHT_ON light is on

0-light is off, 1-light is on: as set in the Lamp Settings dialog box (fixed parameter)
LIGHT_RED red component of the light color

as set in the Lamp Settings dialog box (fixed parameter)
LIGHT_GREEN green component of the light color

as set in the Lamp Settings dialog box (fixed parameter)
LIGHT_BLUE blue component of the light color

as set in the Lamp Settings dialog box (fixed parameter)
LIGHT_INTENSITY light intensity

as set in the Lamp Settings dialog box (fixed parameter)

Miscellaneous

GDL Reference Guide 269

Label parameters
LABEL_POSITION position of the label

array[3][2] containing the coordinates of the 3 points defining the label position
LABEL_CUSTOM_ARROW use symbol arrow option on/off

1 if the Use symbol arrow checkbox is checked, 0 otherwise
LABEL_ARROW_PEN pen of the arrow in the settings dialog box

LABEL_ARROWHEAD_PEN pen of the arrowhead in he settings dialog box

LABEL_FONT_NAME font name in the settings dialog box

LABEL_TEXT_SIZE text size in the settings dialog box

LABEL_TEXT_PEN pen of the text in the settings dialog box

LABEL_FONT_STYLE font style in the settings dialog box

0-normal, 1-bold, 2-italic, 4- underline
LABEL_FRAME_ON label frame on/off

1 if the label frame is checked, 0 otherwise
LABEL_ANCHOR_POS label anchor position

0 - middle, 1 - top, 2 - bottom according to settings dialog box
LABEL_ROTANGLE Rotation angle in the settings dialog box

LABEL_TEXT_ALIGN Text alignment in the label settings dialog box

1: left aligned, 2: center aligned , 3: right aligned, 4: full justified
LABEL_TEXT_LEADING Line spacing factor in the label settings dialog box

LABEL_TEXT_WIDTH_FACT Width factor as set in the label settings dialog box

LABEL_TEXT_CHARSPACE_FACT Spacing factor, as set in the label settings dialog box

Miscellaneous

270 GDL Reference Guide

Wall parameters - available for Doors/Windows
WALL_ID user ID of the wall
WALL_INTGUID internal GUID of the wall

 the internal GUID generated by the program (cannot be controlled by the user)
WALL_RESOL J~ 3D resolution of a curved wall

effective in 3D only
WALL_THICKNESS C_ thickness of the wall

in case of inclined walls: the wall thickness at the opening axis (local z axis)
WALL_START_THICKNESS Start thickness of the wall
WALL_END_THICKNESS End thickness of the wall
WALL_INCL inclination of the wall surfaces

the angle between the two inclined wall surfaces - 0 for common straight walls
WALL_HEIGHT D_ height of the wall
WALL_MAT_A G_ material of the wall on the side opposite to the opening side
WALL_MAT_B H_ material of the wall on the opening side

this can vary from opening to opening placed in the same wall
WALL_MAT_EDGE I_ material of the edges of the wall
WALL_LINETYPE line type of the wall

applied on the contours only in the floor plan window
WALL_FILL A~ fill type of the wall

fill index, first skin of a composite structure
WALL_FILL_PEN F_ pen of the wall fill
WALL_COMPS_NAME composite structure of the wall

name of the composite or complex structure of the wall, the name of the profile attribute for complex wall, the name of the composite attribute for composite walls, empty string otherwise.
WALL_SKINS_NUMBER number of composite or complex wall skins

range of 1to 127, 0 if single fill applied
WALL_SKINS_PARAMS parameters of the composite or complex wall skins

array with 16 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, upper line type, lower line pen, lower line type, end face pen, fill
orientation, skin type, end face line type, finish skin status, oriented fill status and with arbitrary number of rows.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local, skin type: 0 - cut, 1 - below cutplane, 2 - above cutplane (all skin types are 0 for simple
walls). For D/W in complex walls on the floor plan this variable contains the data of all cut skins, for wall ends on the floor plan the data of all skins. finish skin status: 0: not finish
skin, 1: finish skin, oriented fill status: 0 - global or local fill orientation as set in the "fill orientation" column, 1 - fill orientation and size match with the wall skin direction and
thickness
For D/W and wall ends in the 3D window contains the data of the skins actually cut by the D/W or wall end.

WALL_SECT_PEN E_ pen of the contours of the wall cut surfaces
applied on contours of cut surfaces both in floor plan and section/elevation windows

Miscellaneous

GDL Reference Guide 271

Wall parameters - available for listing and labels only

WALL_VIEW_PEN pen of the contours of the wall on view
applied on all edges in 3D window and on visible edges in section/elevation windows

WALL_FBGD_PEN pen of the background of the fill of the wall
WALL_DIRECTION direction of the wall

straight walls: the direction of the reference line, curved walls: the direction of the chord of the arc
WALL_POSITION absolute coordinates of the wall

the position of the wall’s starting point relative to the project origin

WALL_LENGTH_A length of the wall on the reference line side

WALL_LENGTH_B length of the wall on the side opposite to the reference line

WALL_LENGTH_A_CON conditional wall length on the reference line side

WALL_LENGTH_B_CON conditional wall length on the side opposite to the reference line

WALL_CENTER_LENGTH Length of the wall at the center

WALL_AREA Area of the wall

WALL_PERIMETER Perimeter of the wall

WALL_SURFACE_A surface of the wall on the reference line side

WALL_SURFACE_B surface of the wall on the side opposite to the reference line

WALL_SURFACE_A_CON conditional wall surface on the reference line side

WALL_SURFACE_B_CON conditional wall surface on the side opposite to the reference line

WALL_GROSS_SURFACE_A Gross surface of the wall on the reference line side

WALL_GROSS_SURFACE_B Gross surface of the wall on the side opposite to the reference line

WALL_EDGE_SURF surface of the edge of the wall

WALL_VOLUME volume of the wall

WALL_VOLUME_CON conditional volume of the wall

WALL_GROSS_VOLUME Gross volume of the wall

WALL_VOLUME_A wall skin volume on the reference line side

WALL_VOLUME_A_CON conditional wall skin volume on the reference line side

WALL_VOLUME_B wall skin volume on the side opposite to the reference line

WALL_VOLUME_B_CON conditional wall skin volume on the side opposite to the reference line

WALL_DOORS_NR number of doors in the wall

Miscellaneous

272 GDL Reference Guide

WALL_WINDS_NR number of windows in the wall

WALL_HOLES_NR number of empty openings

WALL_DOORS_SURF surface of doors in the wall

WALL_WINDS_SURF surface of windows in the wall

WALL_HOLES_SURF surface of empty openings in the wall

WALL_HOLES_SURF_A analytic surface of openings on the reference line side

WALL_HOLES_VOLUME analytic volume of openings in the wall

WALL_WINDS_WID combined width of the windows in the wall

WALL_DOORS_WID combined width of the doors in the wall

WALL_COLUMNS_NR number of columns in the wall

WALL_MIN_HEIGHT minimum height of the wall
WALL_MAX_HEIGHT maximum height of the wall
WALL_SKIN_MIN_HEIGHT_A minimum height of the wall skin on the reference line side
WALL_SKIN_MAX_HEIGHT_A maximum height of the wall skin on the reference line side
WALL_SKIN_MIN_HEIGHT_B minimum height of the wall skin on the reference line side
WALL_SKIN_MAX_HEIGHT_B maximum height of the wall skin on the side opposite to the reference line
WALL_SKIN_THICKNESS_A wall skin thickness on the reference line side
WALL_SKIN_THICKNESS_B wall skin thickness on the side opposite to the reference line
WALL_INSU_THICKNESS wall insulation skin thickness
WALL_AIR_THICKNESS wall air skin thickness
WALL_SECT_PEN pen of the contours of the wall cut surfaces applied on contours of cut surfaces

both in floor plan and section/elevation windows

WALL_VIEW_PEN pen of the contours of the wall on view applied on all edges in 3D window and
on outline edges (edges on view below cutting plane) in floor plan and
section/elevation window

Miscellaneous

GDL Reference Guide 273

Column parameters - available for listing and labels only

Note: Wall wrapping will replace column material with the materials of the connecting walls

COLU_CORE core/veneer properties

serves compatibility: it is only effective in the property script of .CPS (Column.Properties) files
COLU_HEIGHT height of the column

COLU_MIN_HEIGHT Minimum height of the column

COLU_MAX_HEIGHT Maximum height of the column

COLU_VENEER_WIDTH thickness of the column veneer

COLU_CORE_X Width of the core

COLU_CORE_Y Depth of the core

COLU_DIM1 1st dimension of the column

COLU_DIM2 2nd dimension of the column

COLU_MAT material of the column

COLU_LINETYPE line type of the column

applied on the contours only in the floor plan window
COLU_CORE_FILL fill of the column core

COLU_VENEER_FILL fill of the column veneer

COLU_SECT_PEN pen of the contours of the column cut surfaces

applied on contours of cut surfaces in both floor plan and section/elevation windows
COLU_VIEW_PEN pen of the column on view

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows
COLU_CORE_FILL_PEN pen of the fill of the column core

COLU_CORE_FBGD_PEN pen of the background of the fill of the column core

COLU_VENEER_FILL_PEN pen of the fill of the column veneer

COLU_VENEER_FBGD_PEN pen of the background of the fill of the column veneer

COLU_PERIMETER Perimeter of the column

COLU_AREA Area of the column

COLU_VOLUME Volume of the column

COLU_GROSS_VOLUME Gross volume of the column

COLU_CORE_SURF surface of the column core

COLU_CORE_GROSS_SURF Gross surface of the column

COLU_CORE_VOL volume of the column core

Miscellaneous

274 GDL Reference Guide

COLU_CORE_GROSS_VOL Gross volume of the core

COLU_VENEER_SURF surface of the column veneer

COLU_VENEER_GROSS_SURF Gross surface of the veneer

COLU_VENEER_VOL volume of the column veneer

COLU_VENEER_GROSS_VOL Gross volume of the veneer

COLU_CORE_TOP_SURF Surface of the core top

COLU_CORE_BOT_SURF Surface of the core bottom

COLU_VENEER_TOP_SURF Surface of the veneer top

COLU_VENEER_BOT_SURF Surface of the veneer bottom

COLU_CORE_GROSS_TOPBOT_SURF Gross surface of the core top and bottom

COLU_VENEER_GROSS_TOPBOT_SURF Gross surface of the veneer top and bottom

Miscellaneous

GDL Reference Guide 275

Beam parameters - available for listing and labels only
BEAM_THICKNESS thickness of the beam

BEAM_HEIGHT height of the beam

BEAM_REFLINE_OFFSET offset of the reference line relative to the axes of the beam

BEAM_PRIORITY 3D intersection priority index number

BEAM_MAT_RIGHT material of the beam on the right side of the reference line

BEAM_MAT_LEFT material of the beam on the left side of the reference line

BEAM_MAT_TOP material of the beam on the top

BEAM_MAT_BOTTOM material of the beam at the bottom

BEAM_MAT_END material of the beam at both ends

BEAM_OUTLINE_LINETYPE line type of the beam outline

BEAM_AXES_LINETYPE line type of the beam axes

BEAM_FILL fill type of the beam

BEAM_FILL_PEN pen of the beam fill

BEAM_SECT_PEN pen of the contours of the beam cut surfaces

BEAM_FBGD_PEN pen of the background of the fill of the beam

BEAM_DIRECTION the direction of the beam reference line

BEAM_POSITION absolute coordinates of the beam axis starting point

BEAM_LENGTH_RIGHT length of the beam on the right side of the reference line

BEAM_LENGTH_LEFT length of the beam on the left side of the reference line

BEAM_RIGHT_SURF surface of the beam on the right side of the reference line

BEAM_LEFT_SURF surface of the beam on the left side of the reference line

BEAM_TOP_SURF surface of the top of the beam

BEAM_BOTTOM_SURF surface of the bottom of the beam

BEAM_END_SURF surface of both ends of the beam

BEAM_VOLUME volume of the beam

BEAM_VOLUME_CON conditional volume of the beam

BEAM_HOLES_NR number of holes in the beam

BEAM_HOLES_SURF total surface of holes in the beam

BEAM_HOLE_EDGE_SURF total surface of hole edges in the beam

BEAM_HOLES_VOLUME total volume of holes in the beam

Miscellaneous

276 GDL Reference Guide

Slab parameters - available for listing and labels only
SLAB_THICKNESS thickness of the slab

SLAB_MAT_TOP material of the top surface of the slab

SLAB_MAT_EDGE material of the edges of the slab

SLAB_MAT_BOTT material of the bottom surface of the slab

SLAB_LINETYPE line type of the slab

SLAB_FILL fill of the slab

fill index - its value is negative in case of a composite structure
SLAB_FILL_PEN pen of the fill of the slab

SLAB_FBGD_PEN pen of the background of the fill of the slab

SLAB_COMPS_NAME composite structure of the slab

name of the composite structure
SLAB_SKINS_NUMBER number of composite slab skins

range of 1 to 8, 0 if single fill applied
SLAB_SKINS_PARAMS parameters of the composite slab skins

array with 15 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, lower line pen, upper line type, lower line type, end face pen, fill
orientation, skin type, end face line type, finish skin status and with arbitrary number of rows.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ArchiCAD always 0 - cut, it can be used as in walls later; finish
skin status: 0 not finish skin, 1: finish skin

SLAB_SECT_PEN pen of the contours of the slab in section

applied on contours of cut surfaces in both floor plan and section/elevation windows
SLAB_VIEW_PEN pen of the slab

applied on all edges in 3D window and on visible edges in section/elevation windows
SLAB_TOP_SURF top surface of the slab

SLAB_GROSS_TOP_SURF gross surface of the slab top

SLAB_TOP_SURF_CON conditional top surface of the slab

SLAB_BOT_SURF bottom surface of the slab

SLAB_GROSS_BOT_SURF gross surface of the slab bottom

SLAB_BOT_SURF_CON conditional bottom surface of the slab

SLAB_EDGE_SURF surface of the edges of the slab

SLAB_GROSS_EDGE_SURF gross surface of the slab edges

SLAB_PERIMETER perimeter of the slab

SLAB_VOLUME volume of the slab

SLAB_GROSS_VOLUME gross volume of the slab

Miscellaneous

GDL Reference Guide 277

SLAB_VOLUME_CON conditional volume of the slab

SLAB_SEGMENTS_NR number of segments of the slab

SLAB_HOLES_NR number of holes in the slab

SLAB_HOLES_AREA area of holes in the slab

SLAB_HOLES_PRM perimeter of holes in the slab

Miscellaneous

278 GDL Reference Guide

Roof parameters - available for listing and labels only
ROOF_THICKNESS thickness of the roof
ROOF_ANGLE slope of the roof
ROOF_MAT_TOP material of the top surface of the roof
ROOF_MAT_EDGE material of the edges of the roof
ROOF_MAT_BOTT material of the bottom surface of the roof
ROOF_LINETYPE line type of the roof

applied on the contours only in the floor plan window
ROOF_FILL fill of the roof

fill index - its value is negative in case of a composite structure
ROOF_FILL_PEN pen of the fill of the roof
ROOF_FBGD_PEN pen of the background of the fill of the roof
ROOF_COMPS_NAME composite structure of the roof

name of the composite structure
ROOF_SKINS_NUMBER number of composite roof skins

range of 1 to 8, 0 if single fill applied
ROOF_SKINS_PARAMS parameters of the composite roof skin

array with 15 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, lower line pen, upper line type, lower line type, end face pen, fill
orientation, skin type, end face line type, finish skin status and with artirary number of rows.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ArchiCAD always 0 - cut, it can be used as in walls later; finish
skin status: 0 not finish skin, 1: finish skin

ROOF_SECT_PEN pen of the contours of the roof cut surfaces
applied on contours of cut surfaces both in floor plan and section/elevation windows

ROOF_VIEW_PEN pen of the roof on view
applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows

ROOF_BOTTOM_SURF bottom surface of the roof
ROOF_GROSS_BOTTOM_SURF gross surface of the roof bottom
ROOF_BOTTOM_SURF_CON conditional bottom surface of the roof
ROOF_TOP_SURF top surface of the roof
ROOF_GROSS_TOP_SURF gross surface of the roof top
ROOF_EDGE_SURF surface of the edge of the roof
ROOF_GROSS_EDGE_SURF gross surface of the roof edges
ROOF_PERIMETER perimeter of the roof
ROOF_VOLUME volume of the roof
ROOF_GROSS_VOLUME gross volume of the roof
ROOF_VOLUME_CON conditional volume of the roof

Miscellaneous

GDL Reference Guide 279

Fill parameters - available for listing and labels only

Mesh parameters - available for listing and labels only

ROOF_SEGMENTS_NR number of segments of the roof
ROOF_HOLES_NR number of holes in the roof
ROOF_HOLES_AREA area of holes in the roof
ROOF_HOLES_PRM perimeter of holes in the roof
ROOF_INSU_THICKNESS roof insulation skin thickness
ROOF_RIDGE roof ridges length
ROOF_VALLEY roof valleys length
ROOF_GABLE roof gables length
ROOF_HIP roof hips length
ROOF_EAVES roof eaves length
ROOF_PEAK roof peaks length
ROOF_SIDE_WALL roof side wall connection length
ROOF_END_WALL roof end wall connection length
ROOF_TRANSITION_DOME roof dome connection length
ROOF_TRANSITION_HOLLOW roof hollow connection length

FILL_LINETYPE line type of the fill
FILL_FILL fill type of the fill
FILL_FILL_PEN pen of the fill pattern of the fill
FILL_PEN pen of the fill
FILL_FBGD_PEN pen of the background of the fill
FILL_SURF area of the fill
FILL_PERIMETER perimeter of the fill
FILL_SEGMENT_NR number of segments of the fill
FILL_HOLES_NR number of holes in the fill
FILL_HOLES_PRM perimeter of holes in the fill
FILL_HOLES_AREA area of holes in the fill

MESH_TYPE type of the mesh
1- closed body, 2 - top & edge, 3 - top surface only

MESH_BASE_OFFSET offset of the bottom surface to the base level
MESH_USEREDGE_PEN pen of the user defined ridges of the mesh
MESH_TRIEDGE_PEN pen of the triangulated edges of the mesh
MESH_SECT_PEN pen of the contours of the mesh in section

applied on contours of cut surfaces of walls both in floor plan and section/elevation windows

Miscellaneous

280 GDL Reference Guide

Curtain Wall parameters - available for listing and labels only

MESH_VIEW_PEN pen of the contours on view
applied on all edges in 3D window and on edges on view in section/elevation windows

MESH_MAT_TOP material of the top surface of the mesh
MESH_MAT_EDGE material of the edges of the mesh
MESH_MAT_BOTT material of the bottom surface of the mesh
MESH_LINETYPE line type of the mesh

applied on the contours only in the floor plan window
MESH_FILL fill type of the mesh
MESH_FILL_PEN pen of the fill of the mesh
MESH_FBGD_PEN pen of the background of the fill of the mesh
MESH_BOTTOM_SURF bottom surface of the mesh
MESH_TOP_SURF top surface of the mesh
MESH_EDGE_SURF surface of the edge of the mesh
MESH_PERIMETER perimeter of the mesh
MESH_VOLUME volume of the mesh
MESH_SEGMENTS_NR number of segments of the mesh
MESH_HOLES_NR number of holes in the mesh
MESH_HOLES_AREA area of holes in the mesh
MESH_HOLES_PRM perimeter of holes in the mesh

CWALL_ID user ID of the curtain wall
CWALL_FRAMES_LENGTH length of frames in the lcurtain wall
CWALL_CONTOUR_FRAMES_LENGTH length of frames on contour in the curtain wall
CWALL_MAINAXIS_FRAMES_LENGTH length of frames on primary gridlines in the curtain wall
CWALL_SECAXIS_FRAMES_LENGTH length of frames on secondary gridlines in the curtain wall
CWALL_CUSTOM_FRAMES_LENGTH length of other frames in the curtain wall
CWALL_PANELS_SURF surface of panels in the curtain wall
CWALL_PANELS_SURF_N surface of north panels in the curtain wall
CWALL_PANELS_SURF_S surface of south panels in the curtain wall
CWALL_PANELS_SURF_E surface of east panels in the curtain wall
CWALL_PANELS_SURF_W surface of west panels in the curtain wall
CWALL_PANELS_SURF_NE surface of northeast panels in the curtain wall
CWALL_PANELS_SURF_NW surface of northwest panels in the curtain wall
CWALL_PANELS_SURF_SE surface of southeast panels in the curtain wall
CWALL_PANELS_SURF_SW surface of southwest panels in the curtain wall
CWALL_SURF surface of the curtain wall
CWALL_SURF_BOUNDARY surface of the curtain wall bordered by boundary frames
CWALL_LENGTH length of the curtain wall
CWALL_HEIGHT height of the curtain wall
CWALL_SLANT_ANGLE slant angle of the curtain wall

Miscellaneous

GDL Reference Guide 281

CWALL_THICKNESS thickness of the curtain wall
CWALL_PANELS_NR number of panels in the curtain wall
CWALL_PATTERN_ANGLE pattern angle of the curtain wall

Miscellaneous

282 GDL Reference Guide

Curtain Wall Frame parameters - available for listing and labels only
CWFRAME_TYPE type of the frame

'Invisible', 'Generic', 'Butt-glazed' or the name of the GDL object
CWFRAME_CLASS class of the frame

0 - mullion, 1 - transom, 2 - boundary, 3 - custom
CWFRAME_POSITION location of the frame

0 - primary gridline, 1 - secondary gridline, 2 - boundary, 3 - other
CWFRAME_DIRECTION slant angle of the frame

degree between 0 and 90
CWFRAME_WIDTH width of the frame
CWFRAME_DEPTH depth of the frame
CWFRAME_LENGTH length of the frame
CWFRAME_MAT material of the frame

Miscellaneous

GDL Reference Guide 283

Curtain Wall Panel parameters - available for listing and labels only

Curtain Wall Junction parameters - available for listing and labels only

Curtain Wall Accessory parameters - available for listing and labels only

CWPANEL_TYPE type of the panel
“Generic” or the name of the GDL object

CWPANEL_CLASS class of the panel
0 - main, 1 - distinct, 2 - custom

CWPANEL_VERTICAL_DIRECTION slant angle of exterior surface of the panel
degree between -90 and 90

CWPANEL_HORIZONTAL_DIRECTION angle of exterior surface of the panel from Project North
degree between -180 and 180

CWPANEL_WIDTH width of the panel
CWPANEL_NOMINAL_WIDTH nominal width of the panel
CWPANEL_HEIGHT height of the panel
CWPANEL_NOMINAL_HEIGHT nominal height of the panel
CWPANEL_THICKNESS thickness of the panel
CWPANEL_SURF surface of the panel
CWPANEL_GROSS_SURF gross surface of the panel
CWPANEL_NOMINAL_SURF nominal surface of the panel
CWPANEL_PERIMETER perimeter of the panel
CWPANEL_MAT_OUTER material for the exterior surface of the panel
CWPANEL_MAT_INNER material for the interior surface of the panel
CWPANEL_MAT_CUT material for the edge of the panel
CWPANEL_FUNCTION function of the panel

0 - fixed, 1 - door, 2 - window
CWPANEL_ORIENTATION opening orientation of door/window panel

left/right

CWJUNC_TYPE type of the junction
name of the GDL object

CWACC_TYPE type of the accessory
name of the GDL object

Miscellaneous

284 GDL Reference Guide

Free users’ globals

Example illustrating the usage of the GLOB_WORLD_ORIGO_... globals:
GLOB_WORLD_ORIGO_... globals:
ADD2 -GLOB_WORLD_ORIGO_OFFSET_X - SYMB_POS_X, -GLOB_WORLD_ORIGO_OFFSET_X -SYMB_POS_Y
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 1
TEXT2 0, 0, "(0.00 ; 0.00)"
TEXT2 0, 0.5, "World Origo"
DEL TOP
if ABS(GLOB_WORLD_ORIGO_OFFSET_X) > 0.01 OR ABS(GLOB_WORLD_ORIGO_OFFSET_Y) > 0.01 THEN

ADD2 - SYMB_POS_X, - SYMB_POS_Y
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 2

GLOB_USER_1 S_

GLOB_USER_2 T_

GLOB_USER_3 U_

GLOB_USER_4 V_

GLOB_USER_5 W_

GLOB_USER_6 X_

GLOB_USER_7 Y_

GLOB_USER_8 Z_

GLOB_USER_9 G~

GLOB_USER_10 I~ free variables 1 to 10 are initalized to number by default

GLOB_USER_11

GLOB_USER_12

GLOB_USER_13

GLOB_USER_14

GLOB_USER_15

GLOB_USER_16

GLOB_USER_17

GLOB_USER_18

GLOB_USER_19

GLOB_USER_20 free variables 11 to 20 are initalized to string by default

Miscellaneous

GDL Reference Guide 285

TEXT2 0, 0, "(" + STR (GLOB_WORLD_ORIGO_OFFSET_X, 9, 4) + "; " + STR
(GLOB_WORLD_ORIGO_OFFSET_Y, 9, 4) + ")"

TEXT2 0, 0.5, "Virtual Origo"
DEL TOP

ENDIF
if ABS(GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X) > 0.01 OR ABS(GLOB_WORLD_ORIGO_OFFSET_Y +
SYMB_POS_Y) > 0.01 THEN

LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 3

TEXT2 0, 0, "(" + STR (GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X, 9, 4) + "; " + STR
(GLOB_WORLD_ORIGO_OFFSET_Y + SYMB_POS_Y, 9, 4)+ ")"TEXT2 0, 0.5, "Object Placement"
ENDIF

Miscellaneous

286 GDL Reference Guide

Old Global Variables
Old global variable names can be used; however, the use of the new names is recommended. Each old global corresponds to a new variable with
a long name.
A_ GLOB_SCALE
B_ GLOB_HSTORY_ELEV
C_ WALL_THICKNESS
D_ WALL_HEIGHT
E_ WALL_SECT_PEN
F_ WALL_FILL_PEN
G_ WALL_MAT_A
H_ WALL_MAT_B
I_ WALL_MAT_EDGE
J_ GLOB_ELEVATION
K_ WIDO_SILL
L_ SYMB_VIEW_PEN
M_ SYMB_MAT
N_ GLOB_FRAME_NR
O_ GLOB_FIRST_FRAME
P_ GLOB_LAST_FRAME
Q_ GLOB_HSTORY_HEIGHT
R_ WIDO_ORIG_DIST
S_ GLOB_USER_1
T_ GLOB_USER_2
U_ GLOB_USER_3
V_ GLOB_USER_4
W_ GLOB_USER_5
X_ GLOB_USER_6
Y_ GLOB_USER_7
Z_ GLOB_USER_8
A~ WALL_FILL
B~ WIDO_RIGHT_JAMB
C~ WIDO_THRES_DEPTH
D~ WIDO_HEAD_DEPTH
E~ WIDO_REVEAL_SIDE
F~ WIDO_FRAME_THICKNESS

Miscellaneous

GDL Reference Guide 287

G~ GLOB_USER_9
H~ WIDO_POSITION
I~ GLOB_USER_10
J~ WALL_RESOL
K~ GLOB_EYEPOS_X
L~ GLOB_EYEPOS_Y
M~ GLOB_EYEPOS_Z
N~ GLOB_TARGPOS_X
O~ GLOB_TARGPOS_Y
P~ GLOB_TARGPOS_Z
Q~ GLOB_CSTORY_ELEV
R~ GLOB_CSTORY_HEIGHT
S~ GLOB_CH_STORY_DIST
T~ GLOB_SCRIPT_TYPE
U~ GLOB_NORTH_DIR
V~ SYMB_MIRRORED
W~ SYMB_ROTANGLE
X~ SYMB_POS_X
Y~ SYMB_POS_Y
Z~ SYMB_POS_Z

Miscellaneous

288 GDL Reference Guide

REQUESTS

REQ
REQ (parameter_string)

Asks the current state of the program. Its parameter - the question - is a string. The GDL interpreter answers with a numeric value. If it does not
understand the question, the answer is negative.
List of current questions:
"GDL_version"
version number of the GDL compiler/interpreter.

Warning: it is not the same as the ArchiCAD version.
"Program"
code of the program (e.g., 1: ArchiCAD).
"Serial_number"
the serial number of the keyplug.
"Model_size"
size of the current 3D data structure in bytes.
"Red_of_material name"
"Green_of_material name"
"Blue_of_material name"
Defines the given material’s color components in RGB values between 0 and 1.
"Red_of_pen index"
"Green_of_pen index"
"Blue_of_pen index"
Defines the given pen’s color components in RGB values between 0 and 1.
"Pen_of_RGB r g b"
Defines the index of the pen closest to the given color. The r, g and b constants’ values are between 0 and 1.

Miscellaneous

GDL Reference Guide 289

REQUEST
REQUEST (question_name, name | index, variable1 [, variable2,...])

The first parameter represents the question string while the second represents the object of the question (if it exists) and can be of either string
or numeric type (for example, the question can be “Rgb_of_material” and its object the material’s name, or “Rgb_of_pen” and its object the
index of the pen). The other parameters are variable names in which the return values (the answers) are stored. The function’s return value is the
number of the answer (in the case of a badly formulated question or a nonexisting name, the value will be 0).
REQUEST ("Name_of_program", "", program_name)

Returns in the given variable the name of the program, e. g., “ArchiCAD”, etc.
Example: Printing the name of the program
n=REQUEST("Name_of_program", "", program_name)
PRINT program_name
REQUEST ("Name_of_macro", "", my_name)
REQUEST ("Name_of_main", "", main_name)
After executing these function calls, the my_name variable will contain the name of the macro, while main_name will contain the name of the
main macro (if it doesn’t exist, empty string).
REQUEST ("ID_of_main", "", id_string)
For library parts placed on the floor plan, returns the identifier set in the tool’s settings dialog box in the id_string variable (otherwise empty
string).
REQUEST ("Name_of_plan", "", name)
Returns in the given variable the name of the current project.
REQUEST ("Story", "", index, story_name)
Returns in the index and story_name variables the index and the name of the current story.
REQUEST ("Home_story", "", index,

story_name)
Returns in the index and story_name variables the index and the name of the home story.
REQUEST ("Story_info", expr, nStories,

index1, name1, elev1, height1 [,
index2, name2, ...])

Returns the story information in the given variables: number of stories and story index, name, elevation, height to next successively. If expr is a
numerical expression, it means a story index: only the number of stories and the information on the specified story is returned. If expr is a string
expression, it means that information on all stories is requested. The return value of the function is the number of successfully retrieved values.

Miscellaneous

290 GDL Reference Guide

Example:
DIM t[]

n = REQUEST ("STORY_INFO", "", nr, t)
FOR i = 1 TO nr
nr = STR ("%.0m", t [4 * (i - 1) + 1])
name = t [4 * (i - 1) + 2]
elevation = STR ("%m", t [4 * (i - 1) + 3])
height = STR ("%m", t [4 * (i - 1) + 4])
TEXT2 0, -i, nr + "," + name + "," + elevation + "," + height
NEXT i

REQUEST ("Internal_id", "", id)
Returns in the id variable the internal id of the library part.

REQUEST ("Linear_dimension", "", format_string)

REQUEST ("Angular_dimension", "", format_string)

REQUEST ("Angular_length_dimension", "" format_string)

REQUEST ("Radial_dimension", "", format_string)

REQUEST ("Level_dimension", "", format_string)

REQUEST ("Elevation_dimension", "", format_string)

REQUEST ("Window_door_dimension", "", format_string)

REQUEST ("Sill_height_dimension", "", format_string)

REQUEST ("Area_dimension", "" format_string)

REQUEST ("Calc_length_unit", "", format_string)

REQUEST ("Calc_area_unit", "", format_string)

REQUEST ("Calc_volume_unit", "", format_string)

REQUEST ("Calc_angle_unit", "",format_string)

With these requests, you can learn the dimension formats set in the Options/Preferences/Dimensions and Calculation Units dialog boxes.
These requests return a format string that can be used as the first parameter in the STR () function.
Example:
format = "" num = 60.55

REQUEST ("Angular_dimension", "",format)!"%.2dd"

TEXT2 0, 0, STR (format, num)!60.55

Miscellaneous

GDL Reference Guide 291

REQUEST ("Clean_intersections", "", state)
Returns the state of the Clean Wall & Beam Intersections feature (1 when turned on, 0 when off)
REQUEST ("Zone_category", "", name, code)

For zones, returns the name and the code string of the current zone category.
REQUEST ("Zone_relations", "", category_name, code, name, number [,category_name2, code2,

name2, number2])

Returns in the given variables the zone category name and code and the name and number of the zone where the library part containing this
request is located. For doors and windows, there can be a maximum of two zones. The return value of the request is the number of successfully
retrieved values (0 if the library part is not inside any zone).
REQUEST ("Zone_relations_of_owner", "", category_name, code, name, number [, category_name2,

code2, name2, number2])

Returns in the given variables the category name & code and the zone name & number of the zone where the owner of the object is located. So,
it is meaningful, if the library part has owner (door-window labels and door-window markers, etc.). In case of a door label, its owner is the door.
For doors and windows, there can be a maximum of two related zones. The return value of the request is the number of successfully retrieved
values (0 if the object has no owner, or it's owner is not inside any zone).
REQUEST ("Zone_colus_area", "", area)

Returns in the area variable the total area of the columns placed in the current zone. Effective only for Zone Stamps.
REQUEST ("Custom_auto_label", "", name)

Returns in the name variable the name of the custom auto label of the library part or an empty string if it does not exist.
REQUEST ("Rgb_of_material", name, r, g, b)

REQUEST ("Rgb_of_pen", penindex, r, g, b)

REQUEST ("Pen_of_RGB", "r g b", penindex)

Like the REQ() function (but in just one call), returns in the specified variables the value of the r, g, b components of the material and pen,
or the index of the pen corresponding to the given RGB values.
REQUEST ("Height_of_style", name, height [, descent, leading])

Returns in the given variables the total height of the style measured in millimeters (height in meters is height / 1000 * GLOB_SCALE); the
descent (the distance in millimeters from the text base line to the descent line) and the leading (the distance in millimeters from the descent line
to the ascent line).
REQUEST ("Style_info", name, fontname [, size, anchor, face_or_slant])

Returns information in the given variables on the previously defined style (see style parameters at the “DEFINE STYLE” on page 211. Can be
useful in macros to collect information on the style defined in a main script.

Miscellaneous

292 GDL Reference Guide

REQUEST ("Name_of_material", index, name)

Returns in the variable the material name identified by index.
REQUEST ("Name_of_fill", index, name)

Returns in the name variable the fill name identified by index.
REQUEST ("Name_of_line_type", index, name)

Returns in the given variable the line name identified by index.
REQUEST ("Name_of_style", index, name)

Returns in the given variable the name of the style identified by index.
If index < 0, it refers to a material, fill, line type or style defined in the GDL script or the MASTER_GDL file. A call of a request with index =
0 returns in the variable the name of the default material or line type. (Empty string for fill and style.)
The return value of the request is the number of successfully retrieved values (1 if no error occurred, 0 for error when the index is not valid).
REQUEST ("WINDOW_DOOR_SHOW_DIM", "", show)

Before 9.0 returns 1 in the show variable if Options/Display Options/Doors & Windows is set to “Show with Dimensions”, 0 otherwise. Since
9.0 display options were split to separate Door and Window display options, so for compatibility reasons AC checks if the request is used in a
Window (or marker of a Window) or a Door (or marker of a Door) and automatically returns the corresponding display option. In other cases
(symbol, lamp, label) the Window option is returned. Can be used to hide/show custom dimensions according to the current Display Options.
Since 9.0 the "window_show_dim", and the "door_show_dim" separate requests are available.
REQUEST ("window_show_dim", "", show)

Returns 1 in the show variable if in the Model View Options/Window options the “with Markers” is checked, 0 otherwise.
REQUEST ("door_show_dim", "", show)

Returns 1 in the show variable if in the Model View Options/Door options the “with Markers” is checked, 0 otherwise.
REQUEST ("name_of_listed", "", name)

Returns in the name variable the name of the library part associated with the property type library part containing this request. For elements
(Walls, Slabs, etc.), the name is an empty string.
REQUEST ("window_door_zone_relev", "", out_direction)

Effective only for Doors and Windows. Use it as complement to the “ZONE_RELATIONS” request. Returns 1 in the out_direction variable if
the Door/Window opening direction is in that of the first room identified by the “ZONE_RELATIONS” request, 2 if the opening direction is
towards the second room. It also returns 2 if there is only one room and the opening direction is to the outside.
REQUEST ("window_door_zone_relev_of_owner”, "", out_direction)

Miscellaneous

GDL Reference Guide 293

Effective only if the library part's parent is a door or a window (markers, labels). Use it as a complement to the “zone_relations_of_owner”
request. Returns 1 in the out_direction variable if the parent's opening direction is in that of the first zone identified by the zone relations type
requests, 2 if the opening direction is towards the second zone. It also returns 2 if there is only one zone and the opening direction is to the
outside.
REQUEST ("matching_properties", type, name1, name2, ...)

If type = 1, returns in the given variables individually associated property library part names, otherwise property library part names associated by
criteria. If used in an associative label, the function returns the properties of the element the label is associated with.
REQUEST ("Constr_Fills_display", "", optionVal)

Returns in the given variable the value of the Cut Fills Display option as set in the Document/ Set Model View/ Model View Options (previous
Construction Fills). Possible values are:
1 - Show cut fill contours only (previous Empty)
2 - Show cut fill contours only with separator lines (previous No Fills)
4 - Cut fill patterns: Solid (previous Solid)
6 - Cut fill patterns: as in Settings (previous Vectorial Hatching)
The function return value is the number of successfully retrieved values, 0 if an error occurred.
REQUEST ("Working_length_unit", "", format_string)

REQUEST ("Working_angle_unit", "", format_string)

With these requests, the user can get the working unit formats as set in the Options > Project Preferences > Working Units dialog box. They
return a format string that can be used as the first parameter in the STR () function. The requests work only when interpreting the parameter or
the user interface scripts.
REQUEST ("Model_length_unit", "", format_string)

REQUEST ("Layout_length_unit", "", format_string)

With these requests, the user can get the layout and the model unit formats as set in the Options > Project Preferences > Working Units dialog
box. They return a format string that can be used as the first parameter in the STR () function. The requests work only when interpreting the
parameter or the user interface scripts.
REQUEST ("Model_text_size_unit", "", format_string)

REQUEST ("Layout_text_size_unit", "", format_string)

With these requests, the user can get the layout and the model text size formats. They return a format string that can be used as the first
parameter in the STR () function. The requests work only when interpreting the parameter or the user interface scripts.
IND (MATERIAL, name_string)
IND (FILL, name_string)
IND (LINE_TYPE, name_string)

Miscellaneous

294 GDL Reference Guide

IND (STYLE, name_string)
IND (TEXTURE, name_string)
This function returns the current index of the material, fill, line type or style and texture attribute. The main use of the resulting number is to
transfer it to a macro that requires the same attribute as the calling macro. The result is negative for temporary definitions and positive for global
definitions.
See also “Attributes” in the Configuration chapter of ArchiCAD Help and “Inline Attribute Definition” on page 196.
REQUEST ("ASSOCLP_PARVALUE", expr, name_or_index, type, flags, dim1, dim2, p_values)

Returns information in the given variables on the library part parameter with which the library part containing this request is associated. Can be
used in property objects, labels and marker objects.
The function return value is the number of successfully retrieved values, 0 if the specified parameter does not exist or an error occurred.
expr: the request’s object, associated library part parameter name or index expression
name_or_index: returns the index or the name of the parameter, depending on the previous expression type (returns index if a

parameter name, name if the index is specified)
type: parameter type, possible values

1: boolean
2: integer
3: real number
4: string
5: length
6: angle
7: line
8: material
9: fill
10: pen color
11: light switch
12: rgb color
13: light intensity
14: separator
15: title

flags:
flags = j1 + 2 * j2 + 64 * j7 + 128 * j8,
where ji can be 0 or 1
j1 (1): child/indented in parameter list
j2 (2): with bold text in parameter list

Miscellaneous

GDL Reference Guide 295

j7 (64): disabled (locked in all contexts)
j8 (128): hidden in the parameter list
dim1, dim2: returns the parameter dimensions, both 0 if simple, dim1 > 0, dim2 = 0 if one dimensional array,

both > 0 if two dimensional array. dim1 is the number of rows, dim2 the number of columns
p_values: returns the parameter value or array of values. The array elements are returned successively, row by row as a one

dimensional array, independently of the dimensions of the variable specified to store it. If the variable is not a dynamic array,
there are as many elements stored as there is room for (for a simple variable only one, the first element). If values is a two
dimensional dinamic array, all elements are stored in the first row.

REQUEST ("ASSOCLP_NAME", "", name)

Returns in the given variable the name of the library part associated with the label or marker object. For elements (Walls, Slabs, etc.) the name is
an empty string.
REQUEST ("ASSOCEL_PROPERTIES ", parameter_string, nr_data, data)

Returns, in the given variables, own property data or the element properties which the library part containing this request is associated to (in
labels and associative marker objects). The function return value is the number of successfully retrieved values, 0 if no property data was found
or an error occurred. The function does not work in property objects during the listing process.
parameter_string: a combination of keywords separated by commas representing the requested fields of the property data records.

Records will be ordered accordingly. Possible values:
ISCOMP
DBSETNAME
KEYCODE
KEYNAME
CODE
NAME
FULLNAME
QUANTITY
TOTQUANTITY
UNITCODE
UNITNAME
UNITFORMATSTR
PROPOBJNAME
nr_data: returns the number of the data items
data: returns the property data, records containing and being ordered by the fields specified in the parameter string. Values are

returned as a one dimensional array which contains the requested record fields successively, independently of the dimensions
of the variable specified to store it. If the variable is not a dynamic array, there are as many elements stored as there is room

Miscellaneous

296 GDL Reference Guide

for (for a simple variable only one, the first element). If values is a two dimensional dynamic array, all elements are stored in
the first row.

Miscellaneous

GDL Reference Guide 297

Example:
DIM DATA []
n = REQUEST ("ASSOCEL_PROPERTIES", "iscomp, code, name", nr, data)
 IF nr = 0 THEN
 TEXT2 0, 0, "No properties"
ELSE
 j = 0
 FOR i = 1 TO nr
 IF (i) MOD 3 = 0 THEN
 TEXT2 0, -j, DATA [i] ! name
 j = j + 1
 ENDIF
 NEXT i
ENDIF

REQUEST ("REFERENCE_LEVEL_DATA", "",
name1, elev1, name2, elev2, name3, elev3)

Returns in the given variables the names and elevations of the reference levels as set in the Preferences/Working Units/Reference Levels dialog.
The function return value is the number of successfully retrieved values, 0 if an error occurred.
REQUEST ("ANCESTRY_INFO", expr, name [, guid, parent_name1, parent_guid1,

..., parent_namen, parent_guidn)

Ancestry information on a library part
If expr = 0, returns in the given variables the name and the global unic identifier of the library part containing this request function. Optionally
the function returns the names and global unic identifiers of the parents of the library part (parent_namei, parent_guidi). If the parent templates
are not loaded their names will be empty strings.
If expr = 1, returns information on the library part replaced by the template containing this function. In this case if the template is not actually
replacing, no values are returned.
The return value of the request is the number of successfully retrieved values.

Miscellaneous

298 GDL Reference Guide

Example:
DIM strings[]
n = REQUEST ("ANCESTRY_INFO", 1, name, guid, strings)
IF n > 2 THEN
 ! data of replaced library part
 TEXT2 0, -1, "replacing: " + name + ' ' + guid
 ! parents
 l = -2
 FOR i = 1 to n - 2 STEP 2
 TEXT2 0, l, strings [i]
 l = l - 1

NEXT i
ENDIF

REQUEST ("TEXTBLOCK_INFO",
textblock_name, width, height)

Returns in the given variables the sizes in x and y direction of a previously defined TEXTBLOCK . The sizes are in mm or in m in model space
depending on the fixed_height parameter value of the TEXTBLOCK (millimeters if 1, meters in model space if 0). If width was 0, the
request returns the calculated width and height, if width was specified in the TEXTBLOCK definition, returns the calculated height
corresponding to that width.
REQUEST{2} ("Material_info", name_or_index,

param_name, value_or_values)

REQUEST{2} ("Material_info", name_or_index,
extra_param_name,
value_or_values)

Returns information in the given variable(s) on a parameter (or extra parameter, see “Additional Data” on page 214) of the specified material. RGB
information is returned in three separate variables, texture information is returned in the following variables: file_name, width, height, mask,
rotation_angle corresponding to the texture definiton. All other parameter information is returned in single variables. Possible material
parameter names corresponding to parameters of the material definition:
gs_mat_surface_rgb (surface R, G, B [0.0..1.0])
gs_mat_ambient (ambient coefficient [0.0..1.0])
gs_mat_diffuse (diffuse coefficient [0.0..1.0])
gs_mat_specular (specular coefficient [0.0..1.0])
gs_mat_transparent (transparent coefficient [0.0..1.0])
gs_mat_shining (shininess [0.0..100.0])
gs_mat_transp_att (transparency attenuation [0.0..4.0])
gs_mat_specular_rgb (specular color R, G, B [0.0..1.0])
gs_mat_emission_rgb (emission color R, G, B [0.0..1.0])
gs_mat_emission_att (emission attenuation [0.0..65.5])

Miscellaneous

GDL Reference Guide 299

gs_mat_fill_ind (fill index)
gs_mat_fillcolor_ind (fill color index)
gs_mat_texture (texture index)
Example:
REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_ambient", a)

REQUEST{2} ("Material_info", 1, "gs_mat_surface_rgb", r, g, b)

REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_texture", file_name, w, h, mask, alpha)

REQUEST{2} ("Material_info", "My-Material", "my_extra_parameter", e)

REQUEST ("FONTNAMES_LIST", "", fontnames)

Returns in the given variables the fontnames available on the current computer (with character codes included). This list (or any part of this list)
can be used in a VALUES command to set up a fontname popup. The function return value is the number of successfully retrieved values, 0 if
an error occurred.
Example:
dim fontnames[]

REQUEST ("FONTNAMES_LIST", "", fontnames

VALUES "f" fontnames, CUSTOM

This form of the VALUES command assembles a fontnames pop-up for the simple string-typed parameter "f". The "fontnames" variable
contains the possible fontnames (with character codes included) which can be set manually or using the REQUEST ("FONTNAMES_LIST",
...) command. The CUSTOM keyword is necessary for the correct handling of missing fonts on other platforms/computers: if it is specified, a
fontname set on another platform/computer missing in the current environment will be preserved in the parameter settings as a custom value
(otherwise, due to the implementation of the VALUES command, a missing string popup value in the parameter settings will be replaced with
the first current string value).
REQUEST ("HomeDB_info", "", homeDBIntId, homeDBUserId, homeDBName, homeContext)

Returns in the given variables the internal ID (integer), the user ID and name (strings) of the home database (where the library part containing
this request was placed).
• if placed on the floor plan: the story internal ID, index as a string and name, homeContext = 1
• if placed on a section: the section internal ID, reference ID and name, homeContext = 2
• if placed on a detail: the detail internal ID, reference ID and name, homeContext = 3
• if placed on a master layout: the layout internal ID, empty string and name, homeContext = 4
• if placed on a layout: the layout internal ID, number and name, homeContext = 5

For labels the returned data refers to the labeled element. The collected data can be used to uniquely identify elements in different ArchiCAD
databases of a plan file.

Miscellaneous

300 GDL Reference Guide

REQUEST ("floor_plan_option", "", storyViewpointType)

Returns the story viewpoint type which is set in the Model View Options. 0 stands for "Floor Plan", 1 stands for "Ceiling
Plan".

REQUEST ("class_of_fill", index, class)

Returns class of the fill identified by index in the class variable.
1: vector fill
2: symbol fill
3: translucent fill
4: linear gradient fill
5: radial gradient fill
6: image fill

REQUEST ("view_rotangle", "", angleViewRotation)

Returns the rotation angle of the current view.
REQUEST (extension_name, parameter_string, variable1, variable2, ...)

If the question isn’t one of those listed above, the REQUEST() function will attempt to use it as an extension-specific name. If this extension is
in the Add-Ons folder, it will be used to get as many values for as many variable names as are specified. The parameter string is interpreted by
the extension.

APPLICATION_QUERY
APPLICATION_QUERY (extension_name, parameter_string, variable1, variable2, ...)

GDL allows a way for the individual applications to provide specific request functions in their context. These query options aren't defined in the
GDL syntax; consult the GDL developer documentation of the given application for specific options. Basic Library Documentation applies for
ArchiCAD.

LIBRARYGLOBAL
LIBRARYGLOBAL (object_name, parameter, value)

Fills value with the current model view option parameter value of the library global object defined by object_name if available. A library global
setting is available if the global object is currently loaded in the library, or was loaded earlier and its setting was saved in the current model view
option combination.
Returns 1 if successful, 0 otherwise.
object_name: name of library global object
parameter: name of requested parameter

Miscellaneous

GDL Reference Guide 301

value: filled with the requested parameter value

Example:
success = LIBRARYGLOBAL ("MyGlobalOptions", "detLevel2D", det)
if success > 0 then
 text2 0, 0, det
else
 text2 0, 0, "Not available"
endif

Miscellaneous

302 GDL Reference Guide

DOORS AND WINDOWS

This section discusses the various special options related to the creation of Door/Window library elements.

General Guidelines
Once a door/window is inserted into a wall, the default position of these library parts’ coordinate system is rotated so that the x-y plane is
vertical and the z axis points horizontally into the wall. The origin is placed on the bottom center of the wall opening, on the exterior side of the
wall. This way, doors/windows can be easily modeled by elements in the x-y plane. See the illustrations below.

Because of the special behavior of these library parts, the 2D symbol is generated from a special built-in projection otherwise not accessible by
users (an upside-down side view from a 90 degree direction). The symbol and the 3D shape are fitted to the Door/Window origin by the lower
(y) center (x) of the bounding box, but no adjustment is made along the z axis to enable users to design doors/windows extending beyond the
wall in either z direction.
Considering these rules, here are some hints that will help you construct doors/windows that will work properly:
• When constructing the door/window in the floor plan window, visualize it as if you are looking at it from the inside of the wall it will be

inserted into.
• Think of the project zero level as the external surface of the wall.
• Elements that should be inside the wall, like the window frame, should be above the zero level.
• Door panels opening to the outside should be below the zero level.

Miscellaneous

GDL Reference Guide 303

Creation of Door/Window Library Parts
When creating Door/Window type library parts, several possibilities exist, presenting different problems:
• Creation of rectangular doors/windows in straight walls
• 3D related challanges

- Creation of non-rectangular doors/windows in straight walls
- Creation of rectangular doors/windows in straight walls
- Creation of non-rectangular doors/windows in curved walls

• 2D related challanges
- Cutting custom wall opening
- WALLHOLE2
- Extending the wall polygon
- WALLBLOCK2
- WALLLINE2
- WALLARC2

Rectangular Doors/Windows in Straight Walls
This is the easiest and most sraightforward way of creating doors and windows. The use of simple GDL commands such as PRISM_ or RECT
is recommended.
If you want to match the surface materials of door/window elements to those of the wall, the bottom surface of the elements should match the
outside, and the top surface the inside of the wall. You can achieve this from your scripts using the WALL_MAT_A, WALL_MAT_B and
WALL_MAT_EDGE global variables representing the materials of the wall into which the door/window is placed. In the 2D script, the
WALL_SECT_PEN, WALL_FILL_PEN and WALl_FILL˜ global variables can be useful, as these give you the pen numbers of the wall
contour and fill plus the index number of the fill of the wall on the floor plan into which the door/window is placed. With composite walls, you
have to use the corresponding global variables.
See “Miscellaneous” on page 263 for details.
The object libraries come with a large set of door/window macros. These GDL scripts contain common building elements which are used by
many doors/windows in the library. There are macros for generating commonly-used frames, panels and many other types of door/window
parts. Open some door/window library parts to see what kind of macros they call and what type of parts those macros generate.

Miscellaneous

304 GDL Reference Guide

Example:

A=0.9: B=1.5: C=0.1: D=0.08
E=0.08: F=0.9: G=0.03: H=3
PRISM_ 10,C,
 -A/2, 0, 15, A/2, 0, 15,
 A/2, B, 15, -A/2, B, 15,
 -A/2, 0, -1,
 -A/2+D, D, 15, A/2-D, D, 15,
 A/2-D, B-D, 15, -A/2+D, B-D, 15,
 -A/2+D, D, -1
ADD -A/2+D, F, 0
BRICK A-2*D, E, C
ADD -G/2, -F+D, C/2
GOSUB 1
ADDZ -G
GOSUB 1
DEL 2
MATERIAL "Glass"
ADD0, -F+D, C/2
RECT A-2*D, F-D
ADDY F-D+E
RECT A-2*D, B-F-E-D
END
1: FOR I=1 TO H-1
ADDX (A-2*D)/3
BLOCK G, F-D, G
ADDY F+E-D
BLOCK G, B-F-D-E, G
DEL 1
NEXT I
DEL H-1
RETURN

Z

Y

X

Miscellaneous

GDL Reference Guide 305

3D Related Challanges

Non-Rectangular Doors/Windows in Straight Walls
When working with doors/windows, it is important to know that placing a door/window always cuts a rectangular hole into the wall. The size of
this hole is determined by the A and B parameters of the door/window library part. However, when the door/window is not rectangular in
elevation, it does not entirely fill the cut rectangular hole. The solution to this is to use the WALLHOLE or WALLNICHE command to define
a polygon shape to be cut into the wall where the door/window is placed. There are two solutions for this:
• The 3D script has to contain parts that generate those parts of the wall that fill the hole between the door/window body and the edges of the

rectangular wall cut. In this case, special attention must be paid to the visibility of the edges of these fillings.

• With the WALLHOLE or WALLNICHE command, you can define a polygon shape to be cut into the wall where the door/window is
placed.

WALLHOLE

WALLHOLE n, status,
x1, y1, mask1,
...
xn, yn, maskn
[, x, y, z]

n: the number of polygon nodes
status:

1: use the attributes of the body for the generated polygons and edges
2: generated cut polygons will be treated as normal polygons

xi, yi: cross-section polygon coordinates

Y

X

Z

Miscellaneous

306 GDL Reference Guide

maski: similar to the CUTPOLYA statement:
maski = j1 + 2 * j2 + 4 * j3 + 64 * j7
x, y, z: optional direction vector (default is door/window Z axis)

This command can be used in doors’/windows’ 3D script to cut custom hole(s) in the wall they are placed into. During the 3D generation of the
current wall, the 3D script of all its doors/windows is interpreted without model generation to collect the WALLHOLE commands. If they
exist, the current wall will be cut using an infinite tube with the polygonal cross-section and direction defined in the script. There can be any
number of WALLHOLEs for any door/window, so it is possible to cut more holes for the same door/window, even intersecting ones. If at least
one WALLHOLE command is interpreted in a door/window 3D script, no rectangular opening will be generated for that door/window.

Note: The 3D reveal will not be generated automatically for custom holes, you have to generate it from the script.
The hole customized this way will only be visible in 3D, because WALLHOLE commands do not have any effect in 2D. A 2D representation
can be scripted if needed (used with “framing in plan” off).
The use of convex polygonal cross-sections is recommended; using concave polygons may result in strange shadings/renderings or cut errors.
Convex polygons can be combined to obtain concave ones.

x

z

y

1

n

i

i+1
j1

j2

j3Z

Y

X

Miscellaneous

GDL Reference Guide 307

Examples:

RESOL 72
L1=2.7: L2=1.2: H1=2.1: H2=0.3: H3=0.9
R=((L1/2)^2+H2^2)/(2*H2)
A=ATN((L1/2)/(R-H2))
WALLHOLE 5,1,
 -L1/2,H3,15,
 L1/2,H3,15,
 L1/2,H1-H2,13,
 0,H1-R,915,
 0,2*A,4015
WALLHOLE 4,1,
 L1/2-L2,0,15,
 L1/2,0,15,
 L1/2,H3,15,
 L1/2-L2,H3,15

Miscellaneous

308 GDL Reference Guide

WALLHOLE 5,1,
 -0.45, 0, 15,
 0.45, 0, 15,
 0.45, 1.5, 15,
 0, 1.95, 15,
 -0.45, 1.5, 15

PRISM_ 12, 0.1,
 -0.45, 0, 15,
 0.45, 0, 15,
 0.45, 1.5, 15,
 0, 1.95, 15,
 -0.45, 1.5, 15,
 -0.45, 0, -1,
 -0.35, 0.1, 15,
 0.35, 0.1, 15,
 0.35, 1.45, 15,
 0, 1.80, 15,
 -0.35, 1.44, 15,
 -0.35, 0.1, -1

Miscellaneous

GDL Reference Guide 309

WALLNICHE

WALLNICHE n, method, status,
rx, ry, rz, d,
x1, y1, mask1,
...
xn, yn, maskn

Similar to the CUTFORM definition.
method: Controls the form of the cutting body

1: prism shaped
2: pyramidal
3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry
is ignored).

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8
j1: use the attributes of the body for the generated polygons and edges
j2: generated cut polygons will be treated as normal polygons
j4, j5: define the limit of the cut:

j4 = 0 and j5 = 0: finite cut
j4 = 0 and j5 = 1: semi-infinite cut
j4 = 1 and j5 = 1: infinite cut

j6: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM
command)

j7 : edges generated by the bottom of the cutting body will be invisible
j8 : edges generated by the top of the cutting body will be invisible
rx,ry,rz: defines the direction of cutting if the cutting form is prism-shaped, or the top of the pyramid if the method of cutting is

pyramidal
d: defines the distance along rx,ry,rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then

the start of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction
defined by rx,ry,rz

If the cut is semi-finite, then the start of the cutting body will be at a distance of d along the direction defined by rx,ry,rz and the direction of the
semi-infite cut will be in the opposite direction defined by rx,ry,rz.

Miscellaneous

310 GDL Reference Guide

mask: Defines the visibilty of the edges of the cutting body:
maski = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 64*j7
j1: the polygon will create a visible edge upon entry into the body being cut
j2: the lengthwise edge of the cutting form will be visible
j3: the polygon will create a visible edge upon exiting the body being cut
j4: the bottom edge of the cutting form will be visible
j5: the top edge of the cutting form will be visible
j7: controls the viewpoint dependent visibility of the lengthwise edge

Rectangular Doors/Windows in Curved Walls
When placing doors/windows into curved walls, the sides of the hole cut into the wall can vary according to the picture below.

The hole in the wall on the left is created when the program automatically cuts the hole for the door/window. In this case the sides will be of
radial direction. On the right, the hole is cut using the WALLHOLE command in the 3D Script of the door/window object. The object itself
needs to be written by taking these factors into consideration.
Another thing to consider is whether the door/window placed into the curved wall is a straight or a curved one.

In the case of a straight door/window, as on the left above, the thickness and width of the object and the thickness of the wall are closely related,
since above a certain dimension the object would fall outside of the wall. When using true curved doors/windows, this problem doesn’t occur.

Miscellaneous

GDL Reference Guide 311

Example:

RESOL 72
ROTX -90
MULY -1
C= 0.12: Z=(360*A)/(2*R_*PI)
Y= (360*C)/(2*R_*PI)
A1= 270+Z/2: A2=270-Z/2
GOSUB 1
ADDZ B
MULZ -1
GOSUB 1
DEL 2
ADDZ C
GOSUB 2
MULX -1
GOSUB 2
END
1:
PRISM_ 9, C,
 COS(A2)*R_, SIN(A2)*R_+R_, 11,
 COS(A2+Y)*R_, SIN(A2+Y)*R_+R_, 13,
 0, R_, 900,
 0, Z-2*Y, 4009,
 COS(A1)*R_, SIN(A1)*R_+R_, 11,
 COS(A1)*(R_-0.1), SIN(A1)*(R_-0.1)+R_, 11,
 COS(A1-Y)*(R_-0.1), SIN(A1-Y)*(R_-0.1)+R_,13,
0, -(Z-2*Y), 4009,
 COS(A2)*(R_-0.1), SIN(A2)*(R_-0.1)+R_, 11
RETURN

Y

X

Z

Miscellaneous

312 GDL Reference Guide

2:
PRISM_ 4, B-2*C,
 COS(A2)*R_, SIN(A2)*R_+R_, 10,
 COS(A2+Y)*R_, SIN(A2+Y)*R_+R_, 15,
COS(A2+Y)*(R_-0.1), SIN(A2+Y)*(R_-0.1)+R_,10,
COS(A2)*(R_-0.1), SIN(A2)*(R_-0.1)+R_,10

RETURN

Non-Rectangular Doors/Windows in Curved Walls
The general guidelines given for rectangular doors/windows in curved walls applies here, too.
Example:

C=0.1: D=0.025
Z=A/2-SQR(2)*C: Y=A/2-SQR(2)*C-D
ADDY A/2
WALLHOLE 4, 1,
 0, -A/2, 15,
 A/2, 0, 15,
 0, A/2, 15,
 -A/2, 0, 15
PRISM_ 10, 0.1,
 0, -A/2, 15,
 A/2, 0, 15,
 0, A/2, 15,
 -A/2, 0, 15,
 0, -A/2, -1,
 0, -Z, 15,
 Z, 0, 15,
 0, Z, 15,

Miscellaneous

GDL Reference Guide 313

 -Z, 0, 15,
 0, -Z, -1
ADDZ 0.02
GOSUB 1
ADDZ 0.03
GOSUB 1
ADDY -Z
SET MATERIAL "Glass"
ROTZ 45
RECT SQR(2)*Z, SQR(2)*Z
END
1:
PRISM_ 16, 0.03,
 0, -Z, 15,
 D, -Y, 15,
 D, -D, 15,
 Y, -D, 15,
 Z, 0, 15,
 Z, D, 15,
 D, D, 15,
 D, Y, 15,
 0, Z, 15,
 -D, Y, 15,
 -D, D, 15,
 -Y, D, 15,
 -Z, 0, 15,
 -Y, -D, 15,
 -D, -D, 15,
 -D, -Y, 15
RETURN

2D Related Challanges

Cutting custom wall opening
Placing a door/window cuts a rectangular hole into the wall by default. The size of this hole in 2D is determined by the A parameters of the
door/window library part. Impelementing custom reveals or cavity closures requires cutting custom shaped holes in the wall or extending it a bit
in the floor plan view.
A correct solution for this issue can be achieved by using the the WALLHOLE2, WALLBLOCK2, WALLLINE2 and WALLARC2 commands.

Miscellaneous

314 GDL Reference Guide

WALLHOLE2

WALLHOLE2 n, fill_control, fill_pen, fill_background_pen, fillOrigoX, fillOrigoY, fillAngle,

 x1, y1, s1,
 ...
 xn, yn, sn
Wall opening definition for the plan view coupled with a cover polygon. Only the cut part of the wall is affected, view wall polygons stay intact.
The cover polygon has no contour.
This command can be used in the 2D script of door/window objects only.
The parametrization of the command is mainly the same as the one of POLY2_B{2}.
fill_control = 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7
 where j2, j4, j5 can be 0 or 1.
j2 (2):
 draw cover fill on the polygon
j4 (8):
 local fill orientation
j5 (16):
 local fill should align with the wall direction (fill origin is in the wall origin and directions are matching)
j6 (32), j7 (64):
 fill type determination
0: Drafting Fill
32: Cut Fill
64: Cover Fill

WALLHOLE2{2}

WALLHOLE2{2} n, frame_fill, fillcategory, distortion_flags,
fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1, y1, s1, ..., xn, yn, sn

Miscellaneous

GDL Reference Guide 315

Advanced version of WALLHOLE2, where fill distortion can be controlled in an enhanced way.
It is equivalent to POLY2_B{5} in the geometric definition.
distortion_flags = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8
where each ji flag can be 0 or 1. The valid value for distortion_flags is between 0 and 255. Don't use value out of this range.
j1-j7: similar to the POLY2_B{5} command
j8 (128): local fill should align with the wall direction (fill origin is in the wall origin and directions are matching), meaningful only
when j4 is set. Distortion matrix (mij parameters) are omitted.

Extending the wall polygon

WALLBLOCK2

WALLBLOCK2 n, fill_control, fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY, fillAngle,
x1, y1, s1,...
xn, yn, sn

WALLBLOCK2{2}

WALLBLOCK2{2} n, frame_fill, fillcategory, distortion_flags,
fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1, y1, s1, ..., xn, yn, sn

Wall polygon (extension) definition for the plan view. Both the cut and view wall polygons are cut by the defined polygon. Wall openings defined
via WALLHOLE2 in an other window/door object cut the polygon generated by the WALLBLOCK2 command, while wallholes coming from
the same object don't.
This command can be used in the 2D script of door/window objects only.
The parametrization of the command is exactly the same as the ones of WALLHOLE2.

Miscellaneous

316 GDL Reference Guide

WALLLINE2

WALLLINE2 x1, y1, x2, y2

Wall line (extension) definition between two points for the plan view. Wall openings defined via WALLHOLE2 in an other window/door object
cut the line generated by the WALLLINE2 command, while wallholes coming from the same object don't.
This command can be used in the 2D script of door/window objects only.
The parametrization of the command is exactly the same as the one of LINE2.

WALLARC2

WALLARC2 x, y, r, alpha, beta

An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r, which is drawn by the containing wall. Wall openings defined
via WALLHOLE2 in an other window/door object cut the arc generated by the WALLARC2 command, while wallholes coming from the same
object don't.
This command can be used in the 2D script of door/window objects only.
The parametrization of the command is exactly the same as the one of ARC2.

GDL CREATED FROM THE FLOOR PLAN

Saving the floor plan as a GDL script or library part will result GDL elements. You can use these GDL scripts as templates for your custom
library parts.

Miscellaneous

GDL Reference Guide 317

KEYWORDS

Common Keywords

Operators, Functions
FOR, NEXT
DO, WHILE, ENDWHILE
REPEAT, UNTIL
IF, THEN, ELSE, ENDIF
GOTO
GOSUB
RETURN
END
EXIT
PUT
GET
USE
NSP
CALL, PARAMETERS
PRINT
OPEN
INPUT
VARTYPE
OUTPUT
CLOSE
DIM
BREAKPOINT

Miscellaneous

318 GDL Reference Guide

Reserved Keywords
The keywords listed below are reserved; they exist for compatibility reasons or are not publicized.
BAS
BOX
FILTER
GDLBIN
LIN
LINE
NOD
NODE
ORIGO
PARS
PLOTMAKER
PLOTTER
RECT_
SFLINE
TET
TETRA
TRI
WALL_
VOCA
UI_OK
UI_CANCEL

Miscellaneous

GDL Reference Guide 319

3D Use Only
ADDX, ADDY, ADDZ
ADD
MULX, MULY, MULZ
MUL
ROTX, ROTY, ROTZ
ROT
XFORM

HOTSPOT
LIN_
RECT
POLY, POLY_
PLANE, PLANE_
CIRCLE
ARC

BLOCK, BRICK
CYLIND
SPHERE
ELLIPS
CONE
PRISM, PRISM_, CPRISM_, BPRISM_, FPRISM_, SPRISM_
SLAB, SLAB_, CSLAB_
CWALL_, BWALL_, XWALL_
WALLHOLE
BEAM
CROOF_
ARMC
ARME
ELBOW
EXTRUDE
PYRAMID
REVOLVE
RULED

Miscellaneous

320 GDL Reference Guide

SWEEP
TUBE, TUBEA
COONS
MESH
MASS
LIGHT
PICTURE
TEXT
VERT, TEVE
VECT
EDGE
PGON, PIPG
COOR
BODY
BASE
BINARY

CUTPLANE
CUTSHAPE
CUTPOLY
CUTPOLYA
CUTEND

DEFINE MATERIAL
DEFINE TEXTURE
[SET] MATERIAL
SHADOW
MODEL

SECT_FILL

Miscellaneous

GDL Reference Guide 321

2D Use Only
ADD2
MUL2
ROT2

HOTSPOT2
LINE2
RECT2
POLY2, POLY2_, POLY2_A, POLY2_B
ARC2
CIRCLE2
SPLINE2, SPLINE2A

PICTURE2
TEXT2
FRAGMENT2

PROJECT2

DEFINE FILL
DEFINE FILLA
DEFINE LINE_TYPE

[SET] FILL
[SET] LINE_TYPE
DRAWINDEX
DRAWING2
DRAWING3

Miscellaneous

322 GDL Reference Guide

2D and 3D Use
DEL
[LET]
RADIUS
RESOL
TOLER
PEN
DEFINE STYLE
[SET] STYLE

Non-Geometric Scripts

Property Script
DATABASE_SET
DESCRIPTOR
COMPONENT
REF
SURFACE3D
VOLUME3D

POSITION

WALLS
COLUMNS
BEAMS
DOORS
WINDOWS
OBJECTS
PITCHED_ROOFS
HIP_ROOFS
LIGHTS
HATCHES
ROOMS
MESHES

DRAWING
BINARYPROP

Miscellaneous

GDL Reference Guide 323

Parameter Script
VALUES
PARAMETERS
LOCK

Interface Script
UI_DIALOG
UI_PAGE
UI_BUTTON
UI_PREV
UI_NEXT
UI_GROUPBOX
UI_SEPARATOR
UI_PICT
UI_STYLE
UI_OUTFIELD
UI_INFIELD
UI_FUNCTION
UI_LINK
UI_CURRENT_PAGE
UI_TOOLTIP

Miscellaneous

324 GDL Reference Guide

Alphabetical List of Current GDL Keywords

A

ABS (x) Returns the absolute value of x (integer if x integer, real otherwise).

ACS (x) Returns the arc cosine of x. (-1.0 <= x <= 1.0; 0° <= ACS(x) <= 180°).
ADD dx, dy, dz

ADD2 x, y

ADDGROUP (g_expr1, g_expr2)

ADDX dx

ADDY dy

ADDZ dz

AND (or &) Logical and precedence 6

ARC r, alpha, beta

ARC2 x, y, r, alpha, beta

ARMC r1, r2, l, h, d, alpha

ARME l, r1, r2, h, d

ASN (x) Returns the arc sine of x. (-1.0 <= x <= 1.0; -90° <= ASN(x) <= 90°).
ATN (x) Returns the arc tangent of x. (-90° <= ATN(x) <= 90°).

B

BASE

BEAM left_material, right_material, vertical_material, top_material, bottom_material,
height, x1, x2, x3, x4,
y1, y2, y3, y4, t,
mask1, mask2, mask3, mask4

BINARY mode [, section]

BINARYPROP

BITSET (x, b [, expr])

BITTEST (x, b)

Miscellaneous

GDL Reference Guide 325

BLOCK a, b, c

BODY status

BPRISM_ top_material, bottom_material, side_material,
n, h, radius, x1, y1, s1, ... xn, yn, sn

BREAKPOINT expression

BRICK a, b, c

BWALL_ left_material, right_material, side_material,
height, x1, x2, x3, x4, t, radius,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm

C

CALL macro_name_string [,] PARAMETERS ALL [name1=value1 , ...
namen=valuen][[,][RETURNED_PARAMETERS r1, r2, ...]

CALL macro_name_string [,] PARAMETERS [name1=value1 , ... namen=valuen][[,]
RETURNED_PARAMETERS r1, r2, ...]

CALL macro_name_string [,] PARAMETERS [name1=value1 , ... namen=valuen]

CEIL (x)Returns the smallest integral value thatis not smaller than x (always integer).
(e.g., CEIL(1.23) = 2; CEIL (-1.9) = -1).

CIRCLE r

CIRCLE2 x, y, r 117

CLOSE channel

COMPONENT name, quantity, unit [, proportional_with, code, keycode, unitcode]

CONE h, r1, r2, alpha1, alpha2

Miscellaneous

326 GDL Reference Guide

COONS n, m, mask,
x11, y11, z11, ... x1n, y1n, z1n,
x21, y21, z21, ... x2n, y2n, z2n,
x31, y31, z31, ... x3m, y3m, z3m,
x41, y41, z41, ... x4m, y4m, z4m 94

COOR wrap, vert1, vert2, vert3, vert4

COS (x) Returns the cosine of x.

CPRISM_ top_material, bottom_material, side_material,
n, h, x1, y1, s1, ... xn, yn, sn

CPRISM_{2} top_material, bottom_material, side_material,n, h,
x1, y1, alpha1, s1, mat1,
...
xn, yn, alphan, sn, matn

CROOF_ top_material, bottom_material, side_material,
n, xb, yb, xe, ye, height, angle, thickness,
x1, y1, alpha1, s1,
...,
xn, yn, alphan, sn

CROOF_{2} top_material, bottom_material, side_material,
n, xb, yb, xe, ye, height, angle, thickness,
x1, y1, alpha1, s1, mat1
...,
xn, yn, alphan, sn, matn

CSLAB_ top_material, bottom_material, side_material,
n, h, x1, y1, z1, s1, ... xn, yn, zn, sn

CUTFORM n, method, status,
rx, ry, rz, d,
x1, y1, mask1,
...
xn, yn, maskn

CUTPLANE [x, y, z [, side [, status]]]
[statement1 ... statementn]
CUTEND

CUTPLANE{2} angle [, status]
[statement1 ... statementn]
CUTEND

Miscellaneous

GDL Reference Guide 327

CUTPOLY n,
x1, y1, ... xn, yn
[, x, y, z]
[statement1
statement2
...
statementn]
CUTEND

CUTPOLYA n, status, d,
x1, y1, mask1, ... xn, yn, maskn [,
x, y, z]
[statement1
statement2
...
statementn]

CUTSHAPE d [, status]
[statement1 statement2 ... statementn]
CUTEND

status: controls the treatment of the generated cut polygons. If not specified (for
compatibility reasons) the default value is 3.

status = j1 + 2*j2
j1: use the attributes of the body for the generated polygons and edges
j2: generated cut polygons will be treated as normal polygons

Miscellaneous

328 GDL Reference Guide

CWALL_ left_material, right_material, side_material,
height, x1, x2, x3, x4, t,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm

CYLIND h, r

Miscellaneous

GDL Reference Guide 329

D

DATABASE_SET set_name [descriptor_name, component_name, unit_name, key_name, criteria_name,
list_set_name]

DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE FILL name [[,] FILLTYPES_MASK fill_types,] pattern1, pattern2, pattern3, pattern4,
pattern5, pattern6, pattern7, pattern8,
spacing, angle, n,
frequency1, direction1, offset_x1, offset_y1, m1,
length11, ... length1m,
...
frequencyn, directionn, offset_xn,
lengthn1, ... lengthnm

DEFINE FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE FILL_A parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,] pattern1, pattern2, pattern3, pattern4,
pattern5, pattern6, pattern7, pattern8, spacing_x, spacing_y, angle, n, frequency1,
directional_offset1, direction1,
offset_x1, offset_y1, m1, length11,
...
length1m, ... frequencyn,
directional_offsetn, directionn,
offset_xn, offset_yn, mn,
lengthn1, ... lengthnm

DEFINE LINE_TYPE name spacing, n,
length1, ... lengthn

DEFINE LINE_TYPE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...][[,]
ADDITIONAL_DATA name1 = expr1 [, ...]]

DEFINE MATERIAL name type, parameter1,parameter2, ... parametern

DEFINE MATERIAL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]]

DEFINE STYLE name font_family, size, anchor, face_code

DEFINE STYLE{2} name font_family, size, face_code

Miscellaneous

330 GDL Reference Guide

DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]
pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
spacingx1, spacingy1, spacingx2, spacingy2,
angle, scaling1, scaling2, macro_name [,]
PARAMETERS [name1 = value1, ... namen = valuen]

DEFINE SYMBOL_FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE SYMBOL_LINE name dash, gap, macro_name PARAMETERS [name1 = value1, ... namen = valuen]

DEFINE SYMBOL_LINE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

DEFINE TEXTURE name expression, x, y, mask, angle

DEL n [, begin_with]

DEl TOP

DESCRIPTOR name [,code, keycode]

DIM var1[dim_1], var2[dim_1][dim_2], var3[],
var4[][], var5[dim_1][],
var5[][dim_2]

DO
[statment1
statement2
...
statementn]

DRAWINDEX number

DRAWING2 [expression]

DRAWING3 projection_code, angle, method

DRAWING3{2} projection_code, angle, method [,backgroundColor, origoX, origoY,
filldirection]

DRAWING3{3} projection_code, angle, method , parts[, backgroundColor, fillOrigoX, fillOrigoY,
filldirection][[,]
PARAMETERS name1=value1 , ... namen=valuen]

DRAWING

Miscellaneous

GDL Reference Guide 331

E

EDGE vert1, vert2, pgon1, pgon2, status

ELBOW r1, alpha, r2

ELLIPS h, r

END / EXIT [v1, v2, ..., vn]

ENDGROUP

EXOR (or @) Logical exclusive or precedence 8

EXP (x) Returns the x th power of e (e = 2.7182818).

EXTRUDE n, dx, dy, dz, mask, x1, y1, s1,
..., xn, yn, sn

F

FILE_DEPENDENCE "name1" [, "name2", ...]

FOR variable_name = initial_value TO end_value [STEP step_value]

FPRISM_ top_material, bottom_material, side_material, hill_material,
n, thickness, angle,hill_height,
x1, y1, s1,
...
xn, yn, sn

FRA (x) Returns the fractional part of x (integer 0 if x integer, real otherwise). (e.g.,
FRA(1.23) = 0.23, FRA(-1.23) = 0.77).

FRAGMENT2 fragment_index,
use_current_attributes_flag

FRAGMENT2 ALL,use_current_attributes_flag

Miscellaneous

332 GDL Reference Guide

G

GET (n)

GOTO label

GOSUB label

GROUP "name"

H

HIDEPARAMETER name1 [, name2, ..., namen]

HOTARC2 x, y, r, startangle, endangle

HOTLINE2 x1, y1, x2, y2

HOTSPOT x, y, z [, unID [, paramReference, flags] [, displayParam]]

HOTSPOT2 x, y [, unID [, paramReference, flags][, displayParam]]

HPRISM_ top_mat, bottom_mat, side_mat,
hill_mat,
n, thickness, angle, hill_height, status,
x1, y1, s1,
...,
xn, yn, sn

I

IF condition GOSUB label

IF condition GOTO label

IF condition THEN label

IND (FILL, name_string)

IND (LINE_TYPE, name_string)

IND (MATERIAL, name_string)

IND (STYLE, name_string)

IND (TEXTURE, name_string)

INPUT (channel, recordID, fieldID, variable1 [, variable2,...])

Miscellaneous

GDL Reference Guide 333

INT (x) Returns the integral part of x (always integer). (e.g., INT(1.23) = 1, INT(-1.23) =
-2).

ISECTGROUP (g_expr1, g_expr2)

ISECTLINES (g_expr1, g_expr2)

K

KILLGROUP g_expr

L

[LET] varnam = n

LGT (x) Returns the base 10 logarithm of x.

LIGHT red, green, blue, shadow,
radius, alpha, beta, angle_falloff,
distance1, distance2,
distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
name2 = value2, ...]

LIN_ x1, y1, z1, x2, y2, z2

LINE_PROPERTY expr

LINE2 x1, y1, x2, y2

LOCK name1 [, name2, ..., namen]

LOG (x) Returns the natural logarithm of x.

M

MASS top_material, bottom_material, side_material,
n, m, mask, h,
x1, y1, z1, s1,
...
xn, yn, zn, sn,
xn+1, yn+1, zn+1, sn+1,
...
xn+m, yn+m, zn+m, sn+m

MAX (x1,x2, ... xn) Returns the largest of an unlimited number of arguments.

Miscellaneous

334 GDL Reference Guide

MESH a, b, m, n, mask,
z11, z12, ... z1m,
z21, z22, ... z2m,
...
zn1, zn2, ... znm

MIN (x1,x2, ... xn) Returns the smallest of an unlimited number of arguments.

MODEL SOLID

MODEL SURFACE

MODEL WIRE

MUL mx, my, mz

MUL2 x, y

MULX mx

MULY my

MULZ mz

N

NEXT variable_name

NOT (x) Returns false (=0 integer) if x is true (<>0), and true (=1 integer) if x is false
(=0)(logical negation).

NSP

NTR ()

O

OPEN (filter, filename, parameter_string)

OR (or |) Logical inclusive or precedence 7

OUTPUT (ch, recordID, fieldID, var1, var2...)

OUTPUT channel, recordID, fieldID, expression1 [, expression2, ...]

Miscellaneous

GDL Reference Guide 335

P

PARAGRAPH name alignment, firstline_indent,
left_indent, right_indent, line_spacing [,
tab_size1, ...]
[PEN index]
[[SET] STYLE style1]
[[SET] MATERIAL index]
'string1'
'string2'
...
'string n'
[PEN index]
[[SET] STYLE style2]
[[SET] MATERIAL index]
'string1'
'string2'
...
'string n'
...

PARAMETERS name1 = expression1 [,
name2 = expression2, ...,
namen = expressionn]

PEN n

PGON n, vect, status, edge1, edge2, ... edgen

PI Returns Ludolph's constant. (p = 3.1415926...).

PICTURE expression, a, b, mask

PICTURE2 expression, a, b, mask

PICTURE2{2} expression, a, b, mask

PIPG expression, a, b, mask, n, vect,
status,
edge1, edge2, ... edgen

PLACEGROUP g_expr

PLANE n, x1, y1, z1, ... xn, yn, zn

Miscellaneous

336 GDL Reference Guide

PLANE_ n, x1, y1, z1, s1, ... xn, yn, zn, sn

POLY n, x1, y1, ... xn, yn

POLY_ n, x1, y1, s1, ... xn, yn, sn 61

POLY2 n, frame_fill, x1, y1, ... xn, yn

POLY2_ n, frame_fill, x1, y1, s1, ... xn, yn, sn

POLY2_A n, frame_fill, fill_pen,
x1, y1, s1, ..., xn, yn, sn

POLY2_B n, frame_fill, fill_pen,
fill_background_pen,
x1, y1, s1, ..., xn, yn, sn

POLY2_B{2} n, frame_fill, fill_pen,
fill_background_pen,
fillOrigoX, fillOrigoY,
fillAngle,
x1, y1, s1, ..., xn, yn, sn

POLY2_B{3} n, frame_fill, fill_pen,
fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy, x1, y1, s1, ..., xn, yn, sn

POSITION position_keyword

PRINT expression [, expression, ...]

PRISM n, h, x1, y1, ... xn, yn

PRISM_ n, h, x1, y1, s1, ... xn, yn, sn

PROJECT2 projection_code, angle, method

PROJECT2{2} projection_code, angle,method [,backgroundColor, fillOrigoX,
fillOrigoY, filldirection]

PROJECT2{3} projection_code, angle, method , parts[, backgroundColor, fillOrigoX, fillOrigoY,
filldirection][[,]
PARAMETERS name1=value1 , ... namen=valuen]

PUT expression [, expression, ...]

PYRAMID n, h, mask, x1, y1, s1, ... xn, yn, sn

Miscellaneous

GDL Reference Guide 337

R

RADIUS radius_min, radius_max

RECT a, b

RECT2 x1, y1, x2, y2 114

REF COMPONENT code [, keycode [, numeric_expression]]

REF DESCRIPTOR code [, keycode]

REPEAT
[statement1
statement2
...
statementn]

REQ (parameter_string)

REQ (parameter_string)

REQUEST ("ANCESTRY_INFO", expr, name [, guid, parent_name1, parent_guid1, ..., parent_namen,
parent_guidn)

REQUEST ("Angular_dimension", "", format_string)

REQUEST ("Angular_length_dimension", "" format_string)

REQUEST ("Area_dimension", "" format_string)

REQUEST ("ASSOCEL_PROPERTIES ", parameter_string, nr_data, data)

REQUEST ("ASSOCLP_PARVALUE", expr, name_or_index, type, flags, dim1, dim2, values)

REQUEST ("Calculation_angle_unit", "", format_string)

REQUEST ("Calculation_area_unit", "", format_string)

REQUEST ("Calculation_length_unit", "", format_string)

REQUEST ("Calculation_volume_unit", "", format_string)

REQUEST ("Constr_Fills_display", "", optionVal)

REQUEST ("Elevation_dimension", "", format_string)

REQUEST (FONTNAMES_LIST”,””, fontnames)

REQUEST ("Height_of_style", name, height [, descent, leading])

Miscellaneous

338 GDL Reference Guide

REQUEST ("Level_dimension", "", format_string)

REQUEST ("matching_properties", type, name1, name2, ...)

REQUEST ("Name_of_program", "", program_name)

REQUEST ("Radial_dimension", "", format_string)

REQUEST ("REFERENCE_LEVEL_DATA", "", name1, elev1, name2, elev2, name3, elev3)

REQUEST ("Sill_height_dimension", "", format_string)

REQUEST ("Style_info", name, fontname [, size, anchor, face_or_slant])

REQUEST ("Window_door_dimension", "", format_string)

REQUEST ("WINDOW_DOOR_SHOW_DIM", "", show)

REQUEST ("door_show_dim", "", show)

REQUEST ("window_show_dim", "", show)

REQUEST ("window_door_zone_relev", " ", out_direction)

REQUEST ("Working_angle_unit", "", format_string)

REQUEST ("Working_length_unit", "", format_string)

REQUEST ("Zone_relations", "", category_name, code, name, number [,category_name2, code2,
name2, number2])

REQUEST ("Zone_relations_of_owner", "", category_name, code, name, number [, category_name2,
code2, name2, number2])

REQUEST ("TEXTBLOCK_INFO", textblock_name, width, height)

REQUEST (extension_name, parameter_string, variable1, variable2, ...)

REQUEST (question_name, name | index, variable1 [, variable2,...])

REQUEST (question_name, name | index, variable1 [, variable2,...])

REQUEST{2} ("Material_info", name_or_index, extra_param_name, value_or_values)

REQUEST{2} ("Material_info", name_or_index, param_name, value_or_values)

REQUEST ("HomeDB_info", "", homeDBIntId, homeDBUserId, homeDBName, homeContext)

RESOL n

RETURN

REVOLVE n, alpha, mask, x1, y1, s1, ... xn, yn, sn

Miscellaneous

GDL Reference Guide 339

RICHTEXT x, y, height, 0, textblock_name

RICHTEXT2 x, y, textblock_name

RND (x) Returns a random value between 0.0 and x (x > 0.0) always real.
ROT x, y, z, alpha

ROT2 alpha

ROTX alphax

ROTY alphay

ROTZ alphaz

ROUND_INT (x)

RULED n, mask,
u1, v1, s1, ... un, vn, sn,
x1, y1, z1, ... xn, yn, zn

RULED{2} n, mask,
u1, v1, s1, ... un, vn, sn,
x1, y1, z1, ... xn, yn, zn

S

[SET] FILL index

[SET] FILL name_string

[SET] LINE_TYPE index

[SET] LINE_TYPE name_string

[SET] MATERIAL index

[SET] MATERIAL name_string

[SET] STYLE index

[SET] STYLE name_string

SECT_ATTRS fill, fill_background_pen, fill_pen, contour_pen [, line_type]

SECT_FILL fill, fill_background_pen, fill_pen, contour_pen

SGN (x) Returns +1 integer if x positive, -1 integer if x negative, otherwise 0 integer.

SHADOW keyword_1[, keyword_2]

Miscellaneous

340 GDL Reference Guide

SIN (x) Returns the sine of x.

SLAB n, h, x1, y1, z1, ... xn, yn, zn

SLAB_ n, h, x1, y1, z1, s1, ... xn, yn, zn, sn

SPHERE r

SPLINE2 n, status, x1, y1, angle1, …, xn, yn, anglen

SPLINE2A n, status, x1, y1, angle1, length_previous1, length_next1,... xn, yn, anglen,
length_previousn, length_nextn 119

SPLIT (string, format, variable1 [, variable2, ..., variablen])

SPRISM_ top_material, bottom_material, side_material, n, xb, yb, xe, ye, h, angle, x1, y1,
s1, ... xn, yn, sn

SPRISM_{2} top_material, bottom_material, side_material, n, xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle, x1, y1, s1, mat1, ... xn, yn, sn, matn

SQR (x) Returns the square root of x (always real).

STR (numeric_expression, length, fractions)

STR (format_string, numeric_expression)

STR{2}(format_string, numeric_expression [, exta_accuracy_string])

STRLEN (string_expression)

STRSTR (string_expression1, string_expression2)

STRSUB (string_expression, start_position, characters_number)

STW (string_expression)

SUBGROUP (g_expr1, g_expr2)

SURFACE3D ()

SWEEP n, m, alpha, scale, mask, u1, v1, s1, ... un, vn, sn, x1, y1, z1, ... xm, ym, zm

SWEEPGROUP (g_expr, x, y, z)

T

TAN (x) Returns the tangent of x.

TEVE x, y, z, u, v

TEXT d, 0, expression

Miscellaneous

GDL Reference Guide 341

TEXT2 x, y, expression

TEXTBLOCK name width, anchor, angle, width_factor, charspace_factor, fixed_height,
'string_expr1' [, 'string_expr2', ...]

TOLER d

TUBE n, m, mask,
u1, w1, s1,
...
un, wn, sn,
x1, y1, z1, angle1,
...
xm, ym, zm, anglem

TUBEA n, m, mask,
u1, w1, s1,
...
un, wn, sn,
x1, y1, z1,
...
xm, ym, zm

U

UI_BUTTON type, text, x, y, width, height [, id [, url]]

UI_CURRENT_PAGE index

UI_DIALOG title [, size_x, size_y]

UI_GROUPBOX text, x, y, width, height

UI_INFIELD "name", x, y, width, height [,
method, picture_name,
images_number,
rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1,
...,
expression_imagen, textn]

UI_INFIELD{2} name, x, y, width, height [,
method, picture_name,
images_number,

Miscellaneous

342 GDL Reference Guide

rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1,
...,
expression_imagen, textn]

UI_INFIELD{3} name, x, y, width, height [,
method, picture_name,
images_number,
rows_number, cell_x, cell_y,
image_x, image_y,
expression_image1, text1, value_definition1,
...,
expression_imagen, textn, value_definitionn]

UI_OUTFIELD expression,x,y,width,height [, flags]]

UI_PAGE page_number

UI_PICT expression, x, y [,width, height][, mask]]

UI_SEPARATOR x1, y1, x2, y2

UI_STYLE fontsize, face_code

UI_TOOLTIP

UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI_INFIELD "name", x, y, width, height [,
extra parameters ...] [UI_TOOLTIP tooltiptext]

UI_INFIELD{2} name, x, y, width, height [,
extra parameters ...] [UI_TOOLTIP tooltiptext]

UI_INFIELD{3} name, x, y, width, height [,
extra parameters ...] [UI_TOOLTIP tooltiptext]

UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]

UI_PICT expression, x, y [,width, height [, mask]] [UI_TOOLTIP tooltiptext]

USE (n)

Miscellaneous

GDL Reference Guide 343

V

VALUES "fillparam_name" [[,] FILLTYPES_MASK fill_types,] value_definition1
[, value_definition2, ...]

VARDIM1(expr)

VARDIM2(expr)

VARTYPE (expression)

VECT x, y, z

VERT x, y, z

VOLUME3D ()

W

WALLARC2 x, y, r, alpha, beta

WALLBLOCK2 n, fill_control, fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY, fillAngle,
x1, y1, s1,
...
xn, yn, sn

WALLBLOCK2{2} n, frame_fill, fillcategory, distortion_flags,
fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1, y1, s1, ..., xn, yn, sn

WALLHOLE n, status,
x1, y1, mask1,
...
xn, yn, maskn
[, x, y, z]

WALLHOLE2 n, fill_control, fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY, fillAngle,
x1, y1, s1,
...
xn, yn, sn

Miscellaneous

344 GDL Reference Guide

WALLHOLE2{2} n, frame_fill, fillcategory, distortion_flags,
fill_pen, fill_background_pen,
fillOrigoX, fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1, y1, s1, ..., xn, yn, sn

WALLLINE2 x1, y1, x2, y2

WALLNICHE n, method, status,
rx, ry, rz, d,
x1, y1, mask1,
...
xn, yn, maskn

WHILE condition DO
[statement1
statement2
...
statementn]

Miscellaneous

GDL Reference Guide 345

X

XFORM a11, a12, a13, a14,
a21, a22, a23, a24,
a31, a32, a33, a34

XWALL_ left_material, right_material, vertical_material,horizontal_material,
height, x1, x2, x3, x4,
y1, y2, y3, y4,
t, radius,
log_height, log_offset,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1,
frame_shown1,
...
x_startn, y_lown, x_endn, y_highn,
frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm,
status

XWALL_{2} left_material, right_material, vertical_material,horizontal_material,
height, x1, x2, x3, x4,
y1, y2, y3, y4,
t, radius,
log_height, log_offset,
mask1, mask2, mask3, mask4,
n,
x_start1, y_low1, x_end1, y_high1,
sill_depth1, frame_shown1,
...
x_startn, y_lown, x_endn, y_highn,
sill_depthn, frame_shownn,
m,
a1, b1, c1, d1,
...
am, bm, cm, dm,
status

Miscellaneous

346 GDL Reference Guide

Parameter Naming Convention
Because of the subtype hierarchy, the child library parts automatically inherit all parameters of the parent. (Read more about subtypes and
parameter in the ArchiCAD User Guide). Parameters are identified by their name, so inherited and original parameters can have the same name.
It is the responsibility of the library author to avoid conflicts by using descriptive parameter names prefixed with abbreviated library part names.
For handler parameters and user-defined parameters, GRAPHISOFT has introduced a parameter naming convention in its libraries.

Note: Handlers add extra functionality to library parts (e.g doors and windows cut holes in walls).
Parameters names with the prefix ac_ are reserved for special parameters associated with ArchiCAD handlers (e.g. ac_corner_window). Check
the standard ArchiCAD Library subtype templates for the complete list.
Standard GRAPHISOFT parameter names are marked with the gs_ prefix (e.g. gs_frame_pen). Please check the AC library parts for reference.
Use these parameters in your GDL scripts to ensure full compatibility with GRAPHISOFT libraries.
FM_ is reserved for ArchiFM (e.g. FM_Type) and HVAC_ is assigned to HVAC for ArchiCAD parameters (e.g. HVAC_Manufacturer).

GDL DATA I/O ADD-ON

The “GDL Data In/Out” Add-On allows you to access a simple kind of database by using GDL commands.
Otherwise this Add-On is similar to the “Text GDL In/Out” Add-On.

Description of Database
The database is a text file in which the records are stored in separate lines. The database can be queried and modified based on a single key. The
key and the other items are separated by a character (specified in the OPEN command).
The length of the lines does not need to be the same and even the number of columns in the records may be different.
If a database is open for writing then there should be enough space beside the database file for duplicating the whole file.
Opening and closing a database may be time consuming, so consecutive closing and openning of a adatabase should be avoided.
Large databases (with more than some hundred thousand records) should be ordered by the key values.
A database can be opened, queried, modified and closed by this Add-On using the OPEN, INPUT, OUTPUT and CLOSE GDL commands.

Opening a Database
channel = OPEN (filter, filename, paramstring)
filter: the internal name of the Add-On, in this case "DATA"
filename: the name of the database file to be opened
paramstring: add-on specific parameter, contains separator characters and file opening mode
parameters
Opens the database. If the database file is to be opened for modification and the file does not exist, it creates a new file. If the database file is to
be opened for reading and the file does not exist, an error message is displayed.
Its return value is a positive integer that will identify the specific database. This value will be the database's future reference number.
If the database is opened before open command, it will generate a channel number only.

Miscellaneous

GDL Reference Guide 347

The paramstring may contain the following:

SEPARATOR: after the keyword between single quotation marks ('') you can define a character that you want to use in your text
file (both in case of writing and reading) for the separation of columns. A special case is the tabulator character ('\t').

MODE: after the keyword the mode of opening has to follow.
There are three modes of opening:

• RO (read only)
• WA (read, modify)
• WO (read, modify) Empties the database if exists.

DIALOG: the 'filename' parameter is handling as a file-identifier, otherwise it is a full-path-name. The file-identifier is a simple
string, which will be corresponded to an existing file by the Add-On during a standard 'Open/Save as' dialog. These
correspodence is stored by the Add-On and do not ask again except the file is not available. If the open-mode is read only,
the Add-On put an Open dialog to select an existing document. Otherwise the Add-On put an alert-dialog to select between
the 'Create' and 'Browse' option:

• Browse: search an existing data-file (Open dialog)
• Create: create a new data-file (Save as Dialog).

Always put a comma (,) between SEPARATOR, MODE and DIALOG.
LIBRARY: If the LIBRARY keyword is present in the parameter string, the data file has to be in the loaded library.
If you use keywords that don't exist, if the separator characters given are wrong or if there is nothing in the parameter string, the extension will
use the default settings:
SEPARATOR = '\t', MODE = RO.
Example:
ch1 = OPEN ("DATA", "file1",

"SEPARATOR=';', MODE = RO", DIALOG)
ch2 = OPEN ("DATA", "file2", "")
ch3 = OPEN ("DATA", "newfile",

"SEPARATOR = '\t', MODE = WA")

Miscellaneous

348 GDL Reference Guide

Reading Values from Database
INPUT (channel, recordID, fieldID, var1

[, var2, ...])
recordID: key value (numeric or string)
fieldID: the column number in the given

record (the smallest number : 1
refers to the item after the key
value)

var1,...: variables to receive the read record items
Queries the database based on the key value.
If it finds the record then it reads items from the record starting from the given column and puts the read values into the parameters in
sequence.
In the parameter list there has to be at least one value. The values can be of numeric or string type independently of the parameter type defined
for them.The return value is the number of successfully read values.
If there are more parameters than values, the parameters without corresponding values will be set to zero. In case of empty columns (i.e. if there
is nothing between the separator characters) the parameters will be set to zero.
If it finds no record it returns (-1).
Example:
nr = INPUT (ch1, "key1", 1, v1, v2, v3)
! input of three values from the first column
! (after the key) of the record containing the
! key "key1"
PRINT nr, v1, v2, v3

Miscellaneous

GDL Reference Guide 349

Writing Values into Database
OUTPUT channel, recordID, fieldID, expr1 [, expr2, ...]
recordID: key value (numeric or string)
fieldID: flag: specify 0 (or <= 0) to delete a record, specify 1 (or > 0) to create or modify
a record
expr1,...: new item values of the found or new record in case of deletion these values are
ignored
In case of record creation or modification it sets the record belonging to the given key value. The record will contain the given values in the same
sequence as the appear in the command. The values can be of numeric or string type. There has to be at least one expression.
In case of deletion the record belonging to the given key value is removed from the database. The expression values are ignored, however at least
one should be specified.
Example:
string = "Date: 19.01.1996"
a = 1.5
OUTPUT ch2, "keyA", 1, "New record"
OUTPUT ch2, "keyA", 1, "Modified record"

OUTPUT ch2, "keyA", 0, 0 ! deletes the record
OUTPUT ch2, "keyB", 1, a, string

Closing Database
CLOSE channel
channel: channel value
Closes the database identified by the channel value.

Miscellaneous

350 GDL Reference Guide

GDL DATETIME ADD-ON

The DateTime extension allows you to set various formats for the current date and time set on your computer.
The Add-On works the same way the GDL file operations. You have to open a channel, read the information and close the channel.
This Add-On is also available by using the REQUEST GDL command, in which case the sequence of commands OPEN, INPUT and CLOSE
is called internally. This is the simplest way to obtain the date/time information, with just a single GDL command line:
REQUEST ("DateTime", format, datetimestring)
The second parameter of the Request function is the same as that described in the OPEN function paramstring parameter.

Opening Channel
channel = OPEN (filter, filename, paramstring)
filter: the internal name of the Add-On, in this case "DateTime"
filename: unused (there is no need to open any file to get the system date and time)
paramstring: add-on specific parameter, contains the desired output format of the date and
time
Its return value is a positive integer that will identify the opened channel. This value will become the channel's future reference number. The
paramstring can contain specifiers and other characters.

Miscellaneous

GDL Reference Guide 351

The specifiers are replaced with date and time values as follows:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c date and time in the form: 01:35:56 PM Wednesday, March 27, 1996

%d day of the month as a decimal number (01-31)

%H hour (24-hour clock), as a decimal number (00-23)

%I hour (12-hour clock), as a decimal number (01-12)

%j day of the year, as a decimal number (001-366)

%m month, as a decimal number (01-12)

%M minute, as a decimal number (00-59)

%P AM/PM designation for a 12-hour clock

%S second, as a decimal number (00-61)

%U week number of the year (with Sunday as the first day of the first week), as a decimal number

%w weekday, as a decimal number (0 (Sunday)-6 (Saturday))

%W week number of the year (with Monday as the first day of the first week), as a decimal number (00-53)

%x date in the form Wednesday, March 27, 1996

%X time in the form 01:35:56 PM

%y year without century, as a decimal number (00-99)

%Y year with century, as a decimal number

%Z GDL ignores this specifier. According to the standard, it prints the time zone if it can be determined

%% the % character

Miscellaneous

352 GDL Reference Guide

Example:
dstr = ""
ch = OPEN ("DateTime", "", "%w/%m/%d/%Y, %H:%M%P")
n = INPUT (ch, "", "", dstr)
CLOSE (ch)
PRINT dstr !it prints 3/03/27/1996, 14:36 PM

Reading Information
n = INPUT (channel, "", "", datetimestr)
channel: channel value
datetimestr: string type value
It reads a string type value which represents the date and/or time in the format given at the OPEN sequence. The second and third parameters
are unused (they can be empty strings or 0-s as well).
The return value is the number of successfully read values, in this case 1.

Closing Channel
CLOSE channel
Closes the channel identified by the channel value.

GDL FILE MANAGER I/O ADD-ON

The “GDL File Manager In-Out” Add-On allows you to scan a folder for the contained files/subfolders from a GDL script.
Specify the folder you would like to scan by using the OPEN command.
Get the first/next file/folder name in the specified folder by using the INPUT command.
Finish folder scanning by using the CLOSE command.

Specifying Folder
channel = OPEN (filter, filename, paramstring)
channel : folder id
filter : the internal name of the Add-On, in this case "FileMan"
filename : - the name of folder to be scanned (OS dependent path) - folder id string (in
DIALOG mode - see later)
paramstring : Add-on specific parameter.
The parameters in paramString must be separated by commas (,).
1. parameter: FILES/FOLDERS
What would you like to search for?
2. parameter (optional): DIALOG

Miscellaneous

GDL Reference Guide 353

Indicates that the folder is given by a file id string instead of a file path.
When this is the case, at the first time (and each time when the corresponding file path seems
to be invalid) the user will be faced a dialog box to set the id string - file path
correspondence, which will be stored.
For example, the line
folder = OPEN("FileMan", "c:\\\
opens the root directory of the C drive (on a PC) for file-scanning.

Getting File/Folder Name
n = INPUT (channel, recordID, fieldID, var1 [,

var2, ...])
channel : folder id (returned by the OPEN command)
recordID : 0 (reserved for further development)
fieldID : 0 (reserved for future development)
var1, ... : variable(s) to receive the file/folder name(s)
n : the number of succesfully filled variables
For example, the line
n = INPUT (folder, 0, 0, fileName)
fetches the next file name from the specified folder, and returns 1.
If there are no more files/subfolders the variable n will be set to zero.

Finishing Folder Scanning
CLOSE (channel)
Closes the folder identified by the channel value.
Example: Listing a single folder
The following code segment (as the 2D script section of an object, for example) lists the files in the folder specified by the MyFavouriteFolder
identifier. At first usage, the user will have to assign an existing folder to this identifier. Later, MyFavouriteFolder id will represent that folder.
topFolder = open("FileMan", "MyFavouriteFolder", "files, dialog")
y = 0
n = input(topFolder, 0, 0, fileName)
while n = 1 do
 text2 0, y, fileName
 y = y - 0.6
 n = input(topFolder, 0, 0, fileName)
endwhile
close(topFolder)

Miscellaneous

354 GDL Reference Guide

GDL TEXT I/O ADD-ON

The GDL Text In/Out Add-On allows you to open external text files for reading/writing and to manipulate them by putting/getting values
from/to GDL scripts.
This Add-On interprets the strings on the parameter list of the OPEN, INPUT, OUTPUT commands from the GDL script.
It assumes that a folder named “ArchiCAD Data Folder” exists beside ArchiCAD for user defined files. (The name of this folder is defined in
the Add-On resource fork, therefore it can be localized.) If a folder with that name doesn't exist, the Add-On will create one. The folder can
contain subfolders where the extension will look for existing files. It can read and write TEXT type files.

Opening File
channel = OPEN (filter, filename, paramstring)
filter: the internal name of the Add-On, in this case "TEXT"
filename: the name of the file to be opened
paramstring: add-on specific parameter, contains separator characters and file opening mode
parameters
Opens the file. If the file into which you want to write doesn't exist, it creates the file. If a file to be read doesn't exist, an error message is
displayed.
Its return value is a positive integer that will identify the specific file. This value will be the file's future reference number.
The paramstring can contain the following:
SEPARATOR: after the keyword between single quotation marks (‘’) you can assign a character to use in the text file (for both

writing and reading) to separate columns.
Special cases are the tabulator (‘\t’) and the new row (‘\n’) characters.
MODE: the mode of opening has to follow this keyword. There are only three modes of opening:

RO (read only)
WA (write only, append at the end of the file)
WO (write only, overwrite) the data previously stored in the file will be lost!

A file cannot be open for reading and writing at the same time.
DIALOG: If this keyword is present, a dialog box will appear in which you can enter a file name.
FULLPATH: If this keyword is present, the file name will be interpreted as a full path name.
LIBRARY: If this keyword is present, the data file must be in the loaded library.
Always put a comma (,) between the keywords.
If you use keywords that don’t exist, if the separator characters given are wrong or there is nothing in the parameter string, the extension uses the
default settings: SEPARATOR = ‘\t’, MODE=RO.

Miscellaneous

GDL Reference Guide 355

Example:
ch1 = OPEN ("TEXT", "file1", "SEPARATOR = ';', MODE = RO")

ch2 = OPEN ("TEXT", "file2", "")

ch3 = OPEN ("TEXT", "file3", "SEPARATOR = '\n', MODE = WO")

Reading Values
INPUT (channel, recordID, fieldID,

var1 [, var2, ...])
channel: channel value
recordID: the row number (numeric or string)
fieldID: the column number in the given row
var1,...: variables to receive the read record items
It reads as many values from the given starting position of the file identified by the channel value as many parameters are given. In the parameter
list there has to be at least one value. The function puts the read values into the parameters in sequence. The values can be of numeric or string
type independently of the parameter type defined for them.
The return value is the number of successfully read values, in case of end of file (-1).
Both the row and the column numbers have to be positive integers, otherwise you will get an error message.
If the row or column numbers are incorrect, the input will not be carried out. (n = 0)
If the row and the column can be identified, as many values shall be input from the given starting position as many parameters are given, or if
there are more parameters than values, the parameters without corresponding values will be set to zero.
In case of empty columns (i.e. if there is nothing between the separator characters) the parameters will be set to zero.
Example:
nr = INPUT (ch1, 1, 1, v1, v2, v3) ! input of three values from the first ! column of the
first row

PRINT nr, v1, v2, v3

Miscellaneous

356 GDL Reference Guide

Writing Values
OUTPUT channel, recordID, fieldID, expr1 [, expr2, ...]

channel: channel value

recordID: if positive, the output values will be followed by a new row

fieldID: no role, its value is not used

expr1: values to output

Outputs as many values into the file identified by the channel value from the given position as many expressions are defined. There has to be at
least one expression. The types of the output values are the same as those of the expressions.
In case of a text extension, the OUTPUT will either (depending on the mode of opening) overwrite the file or add to the end of the file the given
expressions to consecutive positions using between them the separator characters defined when opening the file. In this case, the given position
is not interpreted.
The recordID is used to direct the new rows in the output.
If the recordID is positive, the output values will be followed by a new row, otherwise the last value will be followed by a separator character.
Example:
string = "Date: 19.01.1996"

a = 1.5

OUTPUT ch2, 1, 0, string ! string followed by a new row

OUTPUT ch2, 0, 0, a, a + 1, a + 2! separator character after a + 2 ! without new row

Miscellaneous

GDL Reference Guide 357

Closing File
CLOSE channel
channel: channel value
Closes the data base identified by the channel value.
Example
A GDL object that will simply copy the contents of the "f1" file both into the "f2" and the "f3" files, but will write all the values tabulated in "f1"
into a separate row in both "f2" and "f3".
ch1 = open ("TEXT", "f1", "mode = ro")

ch2 = open ("TEXT", "f2", "separator = '\n', mode = wo")

ch3 = open ("TEXT", "f3", "separator = '\n', mode = wo")

i = 1

1:

n = input (ch1, i, 1, var1, var2, var3, var4)

if n <> -1 then

output ch2, 1, 0, var1, var2, var3, var4

output ch3, 1, 0, var1, var2, var3, var4

i = i + 1

goto 1

else

goto 2

endif

2:

close ch1

close ch2

close ch3

end

Miscellaneous

358 GDL Reference Guide

PROPERTY GDL ADD-ON

The purpose of this add-on is to make an ArchiCAD property database accessible from GDL scripts. You can open database tables and query
their contents, just like you would do it with SQL. You can query single records and multiple records (lists). Note that you cannot modify the
database, and you cannot append records to it.
For the detailed description of the property database please refer to the “ArchiCAD 14 Calculation Guide” in the Help menu.

OPEN
Syntax: OPEN ("PROP", "database set name", ["database files"])
Parameters: <database set name> is an arbitrary name that will identify a set of database files in subsequent OPEN calls.
<database files> is a list of text files that are part of the property database. This parameter is optional, if you have previously assigned a
<database set name> to the files you would like to read. The order of the files is fixed: <key file>, <component file>, <descriptor file>, <unit
file>. You don’t need to give full paths, because ArchiCAD will look up these files for you in the active libraries. If you use long filenames, put
them between quotes (‘ or ").
Return value: channel number
Opens a communication channel to the given database files. The content of the database files are read into memory for faster access. As long as
it is open modifications to the property database will not be accessible from this add-on. This is usually not a problem though.
Examples:
1.
channel = OPEN ("PROP", "sample", "’AC 8_KEY.txt’, ’AC 8_COMP.txt’, ‘AC 8_DESC.txt’, ‘AC 8_UNIT.txt’")
This opens a database that consists of the files above (those are the files of the ArchiCAD 7.0 Property database), and names it "sample". Note
that inside the third parameter you must use a different quotation character (you can use " and ‘).
2.
channel = OPEN ("PROP", "sample", "")
This command can be issued after explicitly opening the database files (like in example 1), but before closing it. This lets you use the explicit
command at one place in the Master_GDL script, and use the shorter version later.

CLOSE
Syntax: CLOSE (channel_number)
Return value: none
Closes the previously opened communication channel.

Miscellaneous

GDL Reference Guide 359

INPUT
Syntax: INPUT (channel_number, "query type", "field list", variable1[, …])

Parameters:
<channel number> is a valid communication channel number given by a previous OPEN command.
<query type> specifies the query you would like to execute. The add-on understands the following keywords:

Single-record queries:
KEY, <keycode> – query the record from the key database where <keycode> is the value of the keycode attribute. Valid fields:
KEYCODE, KEYNAME
UNIT, <unitcode> – query the record from the unit database where <unitcode> is the value of the unit code attribute. Valid
fields: UNITCODE, UNITNAME, UNITFORMATSTR
COMP, <keycode>, <code> – query the record from the unit database where <keycode> is the key code attribute value, and
<code> is the component code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY,
QUANTITYSTR, UNITCODE, UNITNAME, UNITFORMATSTR
DESC, <keycode>, <code> – query the record from the unit database where <keycode> is the key code attribute value, and
<code> is the descriptor code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES,
FULLNAME

Listing queries:

KEYLIST – list all records in the key database. Valid fields: KEYCODE, KEYNAME
UNITLIST – list all records in the unit database. Valid fields: UNITCODE, UNITNAME, UNITFORMATSTR
COMPLIST[, <keycode>] – list all records in the component database, or if <keycode> is given, then only those records are
listed whose keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY,
QUANTITYSTR, UNITCODE, UNITNAME, UNITFORMATSTR
DESCLIST[, keycode] – list all records in the descriptor database, or if <keycode> is given, then only those records are listed
whose keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES, FULLNAME
COMPDESCLIST[, <keycode>] – list all records in the component and the descriptor database, or if <keycode> is given, then
only those records are listed whose keycode equals <keycode>. Valid fields: ISCOMP, KEYCODE, KEYNAME, CODE,
NAME, QUANTITY, QUANTITYSTR, UNITCODE, UNITNAME, UNITFORMATSTR, NUMOFLINES, FULLNAME
Use this query with care! If either field is not valid in a database (eg. FULLNAME in the component database) it will be simply
left out from the resulting list (you should be aware of that).

<field list> lists the database attributes whose values you would like to see in the output. If the output is a list, it will be sorted in the order of
the fields listed here.

Miscellaneous

360 GDL Reference Guide

The following fields can be used:
KEYCODE – key code attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,
COMPDESCLIST
KEYNAME – key name attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,
COMPDESCLIST.
UNITCODE – unit code attribute. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST, COMPDESCLIST
UNITNAME – unit name attribute. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST,
COMPDESCLIST
UNITFORMATSTR – GDL format string of the unit. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST,
COMPDESCLIST.
CODE – component or descriptor code attribute (depends on the query). Type: string. Usable in queries: COMP, DESC,
COMPLIST, DESCLIST, COMPDESCLIST.
NAME – name of component or the first line of a descriptor record. Type: string. Usable in queries: COMP, DESC, COMPLIST,
DESCLIST, COMPDESCLIST.
QUANTITY – quantity of a component as a number (for calculations). Type: number. Usable in queries: COMP, COMPLIST,
COMPDESCLIST.
QUANTITYSTR – quantity of a component in string format. Type: string. Usable in queries: COMP, COMPLIST,
COMPDESCLIST.
NUMOFLINES – number of lines in a descriptor record. Type: number. Usable in queries: DESC, DESCLIST.
FULLNAME – the whole descriptor record. Type: string(s). Usable in queries: DESC, DESCLIST.
ISCOMP – tells you whether the next record is a component or a descriptor. Type: number (1 if component, 0 if descriptor).
Usable in queries: COMPDESCLIST

<variables> will hold the result of the query upon completion. You can list several variables if you know exactly how many you need (eg. with
single queries) or you can specify a dynamic array. The records are listed sequentially.
Examples:
1.
INPUT (channel, "KEY, 001", "KEYNAME", keyname)
This is a simple query: the name of the key with ‘001’ code is put into the keyname variable.
2.
INPUT (channel, "DESC, 004, 10", "NUMOFLINES, FULLNAME", desc_txt)
The descriptor record with keycode ‘004’ and code ‘10’ is processed, the number of lines of the description text and the text itself is put into the
desc_txt array. The result is:
desc_txt[1] = <numoflines> (number)
desc_txt[2] = <first row of description> (string)
…
desc_txt[<numoflines+1>] = <last row of description

Miscellaneous

GDL Reference Guide 361

3.
INPUT (channel, "COMPLIST", "NAME, KEYNAME, QUANTITY", comp_list)
Create a component list, sort it by the name field, then by the keyname and finally by the quantity field and put it into the comp_list array. The
result is:
complist[1] = <name1> (string)
complist[2] = <keyname1> (string)
complist[3] = <quantity1> (number)
complist[4] = <name2> (string)
... etc.
4.
INPUT (channel, "COMPDESCLIST, 005", "ISCOMP, KEYNAME, NAME, QUANTITY", x_list)
Creates a common component and descriptor list, which means that records from both tables are listed where <keycode> is ‘005’. The output
is:
x_list[1] = 0 (number, 0 –> it is descriptor)
x_list[2] = <name1> (string –> descriptors do not have <keyname> field, so it is left out)
x_list[3] = 0 (number, descriptors do not have quantity field)
…
x_list[(n*2)-1] = 1 (number –> there were n-1 descriptors listed, now come the components)
x_list[n*2] = <keyname_n> (string)
… etc.

OUTPUT
This command is not implemented in this add-on, since property databases are read-only.

GDL XML EXTENSION

This extension allows reading, writing and editing XML files. It implements a subset of the Document Object Model (DOM) interface. XML is
a text file that uses tags to structure data into a hierarchical system, similar to HTML. An XML document can be modeled by a hierarchical tree
structure whose nodes contain the data of the document. The following node types are known by the extension:
• Element: what is between a start-tag and an end-tag in the document, or for an empty-element it can be an empty-element tag. Elements have

a name, may have attributes, and usually but not necessarily have content. It means that element type nodes can have child nodes. Attributes
are held in an attribute list where each attribute has a different name and a text value.

• Text: a character sequence. It cannot have child nodes.
• Comment: text between the comment delimiters: <!-- the comment itself --> . In the text of the comment each ‘-’

character must be followed by a character different from ‘-’. It also means that the following is illegal: <!-- comment ---> .
Comment type nodes cannot have child nodes.

Miscellaneous

362 GDL Reference Guide

• CDATASection: text between the CDATA section delimiters: <![CDATA[the text itself]]> . In a CDATA section
characters that have special meaning in an XML document need not (and must not) be escaped. The only markup recognized is the closing
‘]]>’. CData section nodes cannot have child nodes.

• Entity-reference: reference to a predefined entity. Such a node can have a read-only subtree and this subtree gives the value of the referenced
entity. During the parsing of the document it can be chosen that entity references are translated into text nodes.

On the top level it is obligatory to have exactly one element type node (the root), and there can be several comment type nodes, as well. The
document type node of the DOM interface is not available through the extension's interface.
For each node in the tree there is a name and a value string associated whose meanings depend on the type of the node:

For each node type the extension defines string keywords that can be passed to the extension in certain instructions:

The success or error code of an OPEN, INPUT or OUTPUT command can be retrieved by the GetLastError instruction of the INPUT
command.

name: value:

Element: name of the tag "" (empty string)

Text: "#text" the text content of the node

Comment: "#comment" the text content of the node

CDATASection: "#cdata-section" the text content of the node

Entity-reference: name of the referenced entity "" (empty string)

Element: ELEM

Text: TXT

Comment: CMT

CDATA section: CDATA

Entity reference: EREF

Miscellaneous

GDL Reference Guide 363

Opening XML Document
The OPEN command:
channel = OPEN (filter, filename, parameter_string)

filter: file extension. This should be 'XML'.
filename: name and path of the file to open (or create), or an indetifier name if the file is opened through a dialog box and the file's location
is given by the user.
parameter_string: a sequence of character flags that determine the open-mode:

• 'r': open in read-only mode. In general only the INPUT command can be used.
• 'e': entity references are not translated into text nodes in the tree. Without this flag there are no entity-references in the document structure.
• 'v': validity check is performed during reading in and writing out. If a DTD exists in the document, the document's structure must agree with

it. Without this flag a well-structured but invalid document can be read in and written out without error message.
• 'n': create a new file. If the file exists, the open will fail. (After the OPEN the CreateDocument instruction must be the first to execute.)
• 'w': overwrite file with empty document if it exists. If it doesn't exist, a new file will be created. (After the OPEN the CreateDocument

instruction must be the first to execute.)
• 'd': the file is obtained from the user in a dialog box. In later runs it will be associated with the identifier given in the filename parameter of

the OPEN command. (If the identifier is already associated to a file, the dialog box will not be opened to the user.)
• 'f': the filename parameter contains a full path.
• 'l': the file is in the loaded library parts.

channel: used to identify the connection in subsequent I/O commands.
If you want to open an existing XML file for modification, then none of the 'r', 'n' and 'w' flags must be set in the parameter string. Only one of
the 'd', 'f' and 'l' flags should be set. If none of these flags is set then filename is considered to be a path relative to the user's documents folder.

Reading XML Document
DOM is an object-oriented model that cannot be adapted to a BASIC-like language like GDL directly. To represent the nodes in the hierarchy
tree we define position descriptors. When we want to walk through the nodes of the tree, first we have to request a new position descriptor from
the extension. Originally a new descriptor points to the root element. The descriptor is in fact a 32 bit identification number whose value has no
interest for the GDL script. The position it refers to can be changed as we move from one node in the tree to another.
The INPUT command:
INPUT (ch, recordID, fieldID, var1, var2...)

ch: channel returned by the OPEN command
recordID: instruction name plus parameters
fieldID: usually a position descriptor var1, var2,...: optional list of variables receiving returned data.

INPUT instructions:

Miscellaneous

364 GDL Reference Guide

1 GetLastError: retrieve the result of the last operation
recordID: "GetLastError"
fieldID: ignored
return values:
var1: error code / ok
var2: the explanation text of error / ok

2 NewPositionDesc: request for a new position descriptor
recordID: "NewPositionDesc"
fieldID: ignored
return value: var1: the new position descriptor (initially refers to the root)

3 CopyPositionDesc: request for a new position descriptor whose starting node is taken from another descriptor.
recordID: "CopyPositionDesc"
fieldID: an existing position descriptor
return value: var1: the new position descriptor (initially refers to where the descriptor given in fieldID refers to)

4 ReturnPositionDesc: when a position descriptor is no longer needed.
recordID: "ReturnPositionDesc"
fieldID: the position descriptor.
Call this instruction when a position descriptor received from the NewPositionDesc or CopyPositionDesc instructions is no longer used.

5 MoveToNode: change the position of a descriptor. (and retrieve the data of the new node)
This instruction can be used for navigating in the tree hierarchy.
recordID: "MoveToNode searchmode nodename nodetype nodenumber"
fieldID: position descriptor
searchmode (or movemode): the nodename parameter must contain a path that determines an element or entity reference node in the xml
document.

The path is relative to the node given in fieldID. The delimiter is the ':' character (which is otherwise an accepted character in an element's
name so this doesn't work for all cases). The '..' string in the path means a step to the parent node. The starting node can be different from
an element or entity reference node, in which case the path must begin with '..' to step back. If there are several element nodes on the same
level with the same name then the first one is chosen.

For the following move-modes the rest of the parameters must not be present:
ToParent: moves to the parent of the node given in fieldID.
ToNextSibling: moves to the next node on the same level.
ToPrevSibling: moves to the previous node on the same level.
ToFirstChild: moves to the first descendant of the fieldID node.
ToLastChild: moves to the last descendant of the fieldID node.

Miscellaneous

GDL Reference Guide 365

The following are the search-modes for which the rest of the parameters may occur, but they have default values if not present:
FromNextSibling: searching starts from the next node on the same level and it moves forward.
FromPrevSibling: searching starts from the node before fieldID and it moves backward on the same level.
FromFirstChild: searching starts from the first descendant of the fieldID node and moves forward.
FromLastChild: searching starts from the last descendant of the fieldID node and moves backward.

nodename: the searching considers those nodes only whose name or value matches nodename. The * and ? characters in nodename are
considered as wildcard characters. For element and entity reference type nodes the name is compared, while for text, comment and CDATA
section nodes the value is compared. Default value: *
nodetype: the searching considers those nodes only whose type is allowed by nodetype. The * means all types are allowed. Otherwise the type
keywords can be combined with the + character to form the nodetype (it must be one word without spaces, like TXT+CDATA.) The default
value is *
nodenumber: if there are several matching nodes, this gives the number of the searched node in the sequence of matching nodes. (Starts from
1) Default value: 1
return values:

var1: name of the node
var2: value of the node
var3: type keyword of the node

Example:
We want to move backwards on the same level to the 2nd node that is an element or an entity reference and whose name starts with K:
INPUT (ch, "MoveToNode FromPrevSibling K* ELEM+EREF 2", posDesc, name, val, type)

6 GetNodeData: retrieve the data of a given node.
recordID: "GetNodeData"
fieldID: the position descriptor
return values:

var1: name of the node
var2: value of the node
var3: type keyword of the node

Miscellaneous

366 GDL Reference Guide

7 NumberofChildNodes: gives the number of child nodes of a given node
recordID: "NumberofChildNodes nodetype nodename"
fieldID: position descriptor
The following optional parameters can narrow the set of child nodes considered:

nodetype: allowed node types as defined in the MoveToNode instruction
nodename: allowed node names or values as defined in the MoveToNode instruction

return values:
var1: number of child nodes

8 NumberofAttributes: returns the number of attributes of an element node.
recordID: "NumberofAttributes attrname"
fieldID: position descriptor (must refer to an element node)
attrname: if present, it can narrow the set of attributes considered as only those attributes will be counted whose names (and not the values)
match attrname. In attrname the * and ? characters are considered wildcard characters.
return values:

var1: number of attributes
9 GetAttribute: return the data of an attribute of an element node

recordID: "GetAttribute attrname attrnumber"
fieldID: position descriptor (must refer to an element node)
optional parameters:

attrname: give the name of the attribute. The * and ? are considered wildcard characters. Default value: *
attrnumber: If several attribute matches attrname, attrnumber chooses the attribute in the sequence of matching attributes. (Counting
starts from 1.) Default value: 1

return values:
var1: value of the attribute
var2: name of the attribute

10 Validate: check the validity of the document.
The validity is not checked during a document modification instruction. It is checked during writing back the file to disk if the 'v' flag was set
in the open-mode string. A validity check can be forced any time by the Validate instruction, however it can consume considerable amount of
time and memory so it is not advisable to do so after every modification.

recordID: "Validate"
fieldID: ignored

Miscellaneous

GDL Reference Guide 367

Modifying XML Document
OUTPUT (ch, recordID, fieldID, var1, var2...)

ch: channel returned by the OPEN command
recordID: instruction name plus parameters
fieldID: usually a position descriptor
var1, var2,...: additional input data

OUTPUT instructions:
Most of the OUTPUT instructions are invalid for files opened in read-only mode.
1 CreateDocument:

recordID: "CreateDocument"
fieldID: ignored
var1: name of the document. This will be the tagname of the root element, as well.

CreateDocument is allowed only if the file was opened in new-file or overwrite mode. In these modes this instruction must be the first to be
executed in order to create the XML document.
2 NewElement: insert a new element type node in the document

recordID: "NewElement insertpos"
fieldID: a position descriptor relative to which the new node is inserted
var1: name of the new element (element tag-name)
insertpos can be:

AsNextSibling: new element is inserted after the position given in fieldID
AsPrevSibling: new element is inserted before the position given in fieldID
AsFirstChild: new element is inserted as the first child of the node given in fieldID (which must be an element node)
AsLastChild: new element is inserted as the last child of the node given in fieldID (which must be an element node)

3 NewText: insert a new text node in the document
recordID: "NewText insertpos"
fieldID: position descriptor
var1: text to be inserted

See also the NewElement instruction.
4 NewComment: insert a new comment node in the document

recordID: "NewComment insertpos"
fieldID: position descriptor
var1: text of the comment to be inserted

See also the NewElement instruction.

Miscellaneous

368 GDL Reference Guide

5 NewCDATASection: insert a new CDATA section node in the document
recordID: "NewCDATASection insertpos"
fieldID: position descriptor
var1: text of the CDATA section to be inserted

See also the NewElement instruction.
6 Copy: make a copy of a subtree of the document under some node

recordID: "Copy insertpos"
fieldID: position descriptor relative to which the subtree is inserted
var1: position descriptor giving the node of the subtree to be copied
insertpos: same as in the NewElement instruction

The copied subtree remains unchanged. Position descriptors pointing to some node in the copied subtree will point to the same node after the
copy.
7 Move: replace some subtree in the document to some other location

recordID: "Move insertpos"
fieldID: position descriptor relative to which the subtree is inserted
var1: position descriptor giving the node of the subtree to be moved
insertpos: same as in the NewElement instruction

The original subtree is deleted. Position descriptors pointing to some node in the moved subtree will point to the same node in the new position
of the subtree.
8 Delete: delete a node and its subtree from the document

recordID: "Delete"
fieldID: position descriptor giving the node to delete

All position descriptors pointing to some node in the deleted subtree become invalid.
9 SetNodeValue: change the value of a node

recordID: "SetNodeValue"
fieldID: position descriptor, it must refer to either a text, a comment or a CDATA section type node
var1: new text value of the node

10 SetAttribute: change an attribute of an element node or create a new one
recordID: "SetAttribute"
fieldID: position descriptor, it must refer to an element type node
var1: name of the attribute
var2: text value of the attribute

If the element already has an attribute with this name then its value is changed, otherwise a new attribute is added to the element's list of
attributes.

Miscellaneous

GDL Reference Guide 369

11 RemoveAttribute: removes an attribute of an element node
recordID: "RemoveAttribute"
fieldID: position descriptor, it must refer to an element type node
var1: name of the attribute to remove

12 Flush: write the current document back to file
recordID: "Flush"
fieldID: ignored

If the file was opened in validate mode, then only a valid document is saved.
13 ChangeFileName: associate another file with the current document

recordID: "ChangeFileName"
fieldID: new file path
var1: gives how fieldID should be interpreted. If var1 is an empty string, fieldID contains a path relative to the user's documents folder. 'd'
means the file's location is obtained from the user from a file dialog box (see the command open-mode flags “OPEN” on page 358). 'l' means
the file is taken from the loaded libraries. 'f' means fieldID contains a full path.

This instruction can be called even if the file was opened in read-only mode. In this case after the execution the document loses the read-only
attribute, so it can be modified and saved to the new file location.
Error codes and messages:

0: "Ok"
-1: "Add-on Initialization Failed"
-2: "Not Enough Memory"
-3: "Wrong Parameter String"
-4: "File Dialog Error"
-5: "File Does Not Exist"
-6: "XML Parse Error"
-7: "File Operation Error"
-8: "File Already Exists"
-9: "This channel is not open"
-10: "Syntax Error"
-11: "Open Error"
-12: "Invalid Position Descriptor"
-13: "Invalid Node Type for this Operation"
-14: "No Such Node Found"
-15: "Internal Error"
-16: "Parameter Error"
-17: "No Such Attribute Found"
-18: "Invalid XML Document"

Miscellaneous

370 GDL Reference Guide

POLYGON OPERATIONS EXTENSION

The “PolyOperations” extension allows you to make operations with polygons.

Opening a channel
ch = INITADDONSCOPE ("PolyOperations ", "", "")

Opens a channel. The return value is the ID of the opened channel.

Polygon container management
PREPAREFUNCTION ch, "CreateContainer", "myContainer", ""

Creates a new polygon container.
PREPAREFUNCTION ch, "DeleteContainer", "myContainer", ""

Delete an existing polygon container.
PREPAREFUNCTION ch, "EmptyContainer", "myContainer", ""

Emptying an existing polygon container.
PREPAREFUNCTION ch, "SetSourceContainer", "mySourceContainer", ""

Set container as source container.
PREPAREFUNCTION ch, "SetDestinationContainer", "myDestinationContainer", ""

Set container as destination container.

-19: "Unhandled Exception"
-20: "Read-Only Document"
-21: "CreateDocument Not Allowed"
-22: "Document Creation Failed"
-23: "Setting NodeValue Failed"
-24: "Move Not Allowed"
-25: "Delete Not Allowed"
-26: "SetAttribute Not Allowed"
-27: "Format File Error"
-28: "Insertion (or Copy) Not Allowed"
-29: "Node Creation Failed"
-30: "Bad String"
-31: "Invalid Name"

Miscellaneous

GDL Reference Guide 371

Polygon management
PREPAREFUNCTION ch, "Store", "poly1", nVertices, nContours, vertArray, contourArray [,

defaultInhEdgeInfo, inhEdgeInfosArray]

Stores the polygon "poly1" with the given parameters in the actual source container.
”poly1”: name of the stored polygon
nVertices: number of vertices
nContours: number of contours
vertArray: Array containing exactly nVertices items that describes all contours of the polygon. Two dimension array of (x, y, angle)

records where x, y, and angle is real value. The angle parameter is the view-angle (deflection) in case of arched edges. This is
a signed value, reflecting the orientation. Zero value means straight edge.

contourArray: An array which contains the index of the last vertex of the i-th contour. It must have exactly nContours items.
defaultInhEdgeInfo: One piece of inherited edge information. To the brand new edges (not created with split) in operations

performed later this information will be attached. With the aid of this you can easily trace the newly created edges after
complex operations. (Optional)

inhEdgeInfosArray: Array containing information attached to edges. It must of contain exactly nVertices integer type items. If an
edge splits into more than one new edges in an operation, this information will be inherited without change to all new edges
created. You can use it for example to store the side angles of a roof. (Optional)

PREPAREFUNCTION ch, "Dispose", "poly1", "myContainer"

Deletes the polygon "poly1" from the container "myContainer".

Miscellaneous

372 GDL Reference Guide

Polygon operation settings
PREPAREFUNCTION ch, "HalfPlaneParams", "", ca, cb, cc

Set the Describes a half plane in 2D used in "PolyCut" operation.
Defining inequality for the half plane: ca * x + cb * y > cc.
ca: Coefficient of x
cb: Coefficient of y
cc: Constant
PREPAREFUNCTION ch, "OffsetParams", "", itemIdx, offsetValue

Set the offset parameters used in "OffsetEdge" and "ResizeContour" operation.
itemIdx: Index of the edge to be translated (for "OffsetEdge" operation).Index of the resizeable contour (for "ResizeContour"

operation).
offsetValue: Distance of the translation. Negative and positive offset values make the edge move inside and outside, respectively. If

the offset is big, the neighboring vertices can be cut out.

Polygon operations
In the following polygon operations the "poly1" and "poly2" source polygons are located in the source polygon container.
The resulting polygons are stored in the destination polygon container with an unique name started with "resPolygonID", where "ID" is a
number.
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "poly1 OP poly2", "", resPolyIDArray)

Executes the "OP" operation with "poly1" and "poly2" polygons and puts the new values into the given parameters. The return value is the
number of the generated polygons
"OP" can be:

+ Polygon addition
- Polygon substraction
/ Polygon intersection
resPolyIDArray: Array of resulting polygon identifiers.

dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "CopyPolygon", "poly1", resPolyIDArray)

Miscellaneous

GDL Reference Guide 373

Copy a polygon from the source container to the destionation container.
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "Regularize", "poly1", resPolyIDArray)

Regularize a polygon. Make it geometrically valid.
A polygon valid if
1 Its first boundary contains all the others
2 Oriented correctly (main contour positive, rest negative)
3 Has no self-intersections
4 Its area is not zero
5 Has no zero length edges
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "PolyCut", "poly1", resPolyIDArray)

Intersects the polygon with a halfplane. The halfplane must be set with an "HalfPlaneParams" command. The result will be regularized.
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "OffsetEdge", "poly1", resPolyIDArray)

Translates an edge of a polygon perpendicularly to its direction. The edge index and translation offset must be set with an "OffsetParams"
command. The result will be regularized.
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "ResizeContour", "poly1", resPolyIDArray)

Enlarges or shrinks a contour of a polygon. The contour index and translation offset must be set with an "OffsetParams" command. The result
will be regularized.

Miscellaneous

374 GDL Reference Guide

Get resulting polygons
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "GetSourcePolygons", "", resPolyIDArray)

Gets all polygon names from the actual source container.
dim resPolyIDArray[]

nPgon = CALLFUNCTION (ch, "GetDestinationPolygons", "", resPolyIDArray)

Gets all polygon names from the actual destination container.
dim resVertices[]

nVertices = CALLFUNCTION (ch, "GetVertices", polygonID, resVertices)

Returns the resulting polygon vertices after any polygon operation call. The polygon with name "polygonID" located in the destination polygon
container.
dim contArr[]

nContours = CALLFUNCTION (ch, "GetContourEnds", polygonID, contArr)

Returns the resulting polygon contour end indices after any polygon operation call. The polygon with name "polygonID" located in the
destination polygon container.
dim inhEdgeInfosArr[]

nEdgeInfos = CALLFUNCTION (ch, "GetInhEdgeInfos", polygonID, inhEdgeInfosArr)

Returns the resulting polygon edge informations after any polygon operation call. The polygon with name "polygonID" located in the
destination polygon container.

Closing channel
CLOSEADDONSCOPE (ch)

Closes channel "ch". Deletes all of the stored polygons.

GDL Reference Guide 375

INDEX
Numerics
2D script 12
2D symbol

generating Door/Window ~ 302
3D script 12
3D Text Elements 117

A
ABS 239
ACS 240
ADD 29
ADD2 27
ADDGROUP 138, 142
ADDITIONAL_DATA 214
ADDX 28
ADDY 28
ADDZ 28
advanced commands and features 18
AND 238
ARC 79
arc definition 154
ARC2 154
ArchiCAD 13

Component Lists in ~ 219
Element Lists in ~ 164

ArchiFM 13
ARMC 72
ARME 73
arrays for parameters 25
ASN 240
ATN 240
attributes

defining ~ 21

B
BackgroundColor 161
BASE 126
base 10 logarithm 240
basic syntactic elements 23
BEAM 65
beam definition 65
BINARY 12, 145
binary 2D data 12

Binary 3D 145
binary 3D data 12
binary data reference 219
binary properties data 13
BINARYPROP 13, 219
bitmap pattern 204
BITSET 241
BITTEST 241
BLOCK 33
block definition 33
bodies 118
BODY 124
body definition with primitives 124
Boolean difference 140
BPRISM_ 42
BREAKPOINT 254
breakpoint definition in script 254
BRICK 33
BWALL_ 56

C
CALL 258
CEIL 239
changing element type in listing 219
Character strings 24
characters available in GDL scripts 23
CIRCLE 78
circle definition 154
CIRCLE2 154
CLOSE 261
closing a file 261
colons in GDL scripts 23
commas in GDL scripts 23
comments 13
complex transformation matrix 30
COMPONENT 218, 219
components 13

~ definition 218
~ reference 219

conditions 250
CONE 36
cone frustrum definition 36
COONS 106
Coons patch generation 106

COOR 121
coordinate system definition

local ~ for primitives 121
coordinate transformations 27

basic ~ 15
intermediate level ~ 17

COS 240
CPRISM_ 41
CROOF_ 65
CSLAB_ 53
Curtain Wall Frame parameters 282
Curtain Wall Panel parameters 283
Curtain Wall parameters 280
curved prism definition 42
curved wall definition 56
CUSTOM 221
CUTFORM 137
CUTPLANE 126
CUTPLANE{2} 126
CUTPOLY 129
CUTPOLYA 134
CUTSHAPE 136
CWALL_ 53
CYLIND 34
cylinder definition 34

D
database definition 217
DATABASE_SET 217
DEFINE FILL 215, 329
DEFINE FILL_A 215
DEFINE FILLA 205
DEFINE LINE_TYPE 210, 215
DEFINE MATERIAL 196, 214
DEFINE STYLE 211
DEFINE SYMBOL_FILL 207, 215, 330
DEFINE SYMBOL_LINE 210, 215
DEL 31
DEL TOP 31
DESCRIPTOR 218
descriptors 13

~ definition 218
~ reference 218

DIALOG 354

Index

376 GDL Reference Guide

DIM 235
DO 250
draw order definition 195
DRAWINDEX 195
DRAWING 220
drawing

~ definition for Element Lists 164
~ reference in 2D script 220

DRAWING2 164
DRAWING3 164
DRAWING3{2} 164

E
EDGE 120
edge definition 120
edges 118
ELBOW 75
ELLIPS 35
ELSE 252
END 23, 254
end of script definition 254
ENDGROUP 142
ENDIF 252
ENDWHILE 250
entry level commands 14
exclamation marks in GDL scripts 23
EXIT 23
EXOR 238
EXP 240
expert level scripting 20
exporting values to a file 261
EXTRUDE 81
extruded prism generation 81

F
file operations 260
FILE_DEPENDENCE 215, 260, 331
FILL 195, 202, 259
fill pattern definition

simple ~ 202
fill pattern setting

~ in 2D views 195
FILLA 205
flow control statements 19
FOR 249
FPRISM_ 45
FRA 239

FRAGMENT2 12, 160
Free users’ globals 283, 284
FULLPATH 354

G
General restrictions for polylines 80
geometric primitives 20
GET 255
global origin 20
global variables 21, 25
GOSUB 252, 253
GOTO 252, 253
GROUP 142

H
half ellipsoid definition 35
HIDEPARAMETER 223
HOTARC 172
HOTARC2 172
HOTLINE 172
HOTLINE2 172
HOTSPOT 76, 167
HOTSPOT2 147, 167
HPRISM_ 47
hybrid 140

I
Identifiers 24
IF 252
importing values from a file 261
IND 242, 293
INPUT 261
INT 239
intermediate commands 16
ISECTGROUP 139, 142
ISECTLINES 139, 142

K
KILLGROUP 143

L
labels 23
LET 187
LGT 240
LIBRARY 354
library parts 12

LIGHT 112
light source definition 112
LIN_ 76
line definition 148
line type

~ definition 208, 210
~ setting 196

Line Types 210
LINE_PROPERTY 151, 191
Line_Property 333
LINE_TYPE 196, 210, 259
LINE2 148
lines in scripts 23
local coordinate system 20
local variables 24
LOCK 223
LOG 241
log wall parameters 59
loops 249
Ludolphs constant 240

M
macro calls 20

~ definition 258
~ for doors/windows 303

macro objects 258
mask values 174
Masking 80
masking rules

~ for meshes 69
~ for prisms 173

MASS 109
master coordinate system 20
Master Script 12
MASTER_GDL 21, 25, 196, 220
MASTEREND_GDL 21
MATERIAL 192, 196, 259
material definition 196
material setting 192
MAX 241
MESH 69
mesh definition

equidistant ~ 69
mesh generation 109
MIN 241
MOD 238
MODE 354
MODEL 191, 259

Index

GDL Reference Guide 377

MODEL SURFACE 141
modeling mode setting 191
moving the local coordinate system 28
MUL 29
MUL2 27
MULX 29
MULY 29
MULZ 29

N
natural logarithm 241
NEXT 249
node definition in 3D 119

~ with texture origin 119
non-rectangular doors/windows

~ in straight walls 305
NOT 241
NSP 255
NTR 32
Numeric expressions 25

O
OPEN 260
opening a file 260
OR 238
OUTPUT 261

P
Parameter Script 13
PARAMETERS 222
parameters 13, 25

~ buffer 254
~ in GDL scripts 19
derived types 25
locking ~ values 223
modifying ~ values in GDL 222
simple types 25

PEN 259
pen color setting 190
PGON 120
PI 240
PICTURE 13, 116
picture element definition 158
picture polygon definition 121
PICTURE2 13, 158
PICTURE2{2} 158
PIPG 121

PLACEGROUP 143
planar polylines

circle using centerpoint and radius 181
segment by relative endpoint 176

Planar Shapes in 3D 76
PLANE 77
PLANE_ 78
POLY 77
POLY_ 77
POLY2 149
POLY2_ 150
POLY2_A 151
POLY2_B 151
polygon definition 120, 149

advanced ~ 151
polygons 118
POSITION 219
preview picture 13
Primitive Elements 118
PRINT 260
PRISM 37
prism definition 37

~ with hill 45
~ with non-parallel upper polygon 48
extended ~ 41
extended oblique ~ 52
extruded general ~ 81
oblique ~ 52

PRISM_ 38
programming language 12
PROJECT2 160
PROJECT2{2} 161
projection of 3D script into 2D symbol 161
prompt 26
Properties Script 13
PYRAMID 85
pyramid definition 85

Q
quotation marks in GDL scripts 24

R
RADIUS 188, 259
RANGE 221
RECT 76
RECT2 148
rectangle definition 148

rectangular doors/windows
~ in straight walls 303

REF 218
REQ 242, 288
REQUEST 242
request calls 242
RESOL 259
RETURN 253
REVOLVE 87
REVOLVE{2} 88
revolved surface definition 87
RICHTEXT 118, 339
RICHTEXT2 159, 339
RND 241
RO 354
roof definition

sloped ~ 65
ROT 30
ROT2 28
rotating the coordinate system 30
ROTX 30
ROTY 30
ROTZ 30
RULED 91
RULED{2} 92

S
scaling the local coordinate system 29
script types 12
SECT_FILL 193
SEPARATOR 354
 192, 196
SET FILL 195
SET LINE_TYPE 196
SET MATERIAL 192
SET STYLE 191
SGN 239
SHADOW 194, 259
shadow casting control 194
Shapes Generated from Polylines 79
simple shapes 14
SIN 240
SLAB 52
SLAB_ 52
smoothness definition for cylindrical elements

~ by approximation 190
~ by radius 188
~ by resolution 189

Index

378 GDL Reference Guide

SOLID 191
solid 140
solid base 140
Solid Geometry Commands 138
special characters 26
SPHERE 34
sphere definition 34
spline definition 155

Bézier type ~ 157
SPLINE2 155
SPLINE2_A 157
SPLIT 245
SPRISM_ 48
SQR 239
square brackets in GDL scripts 25
statements 23
Status 80
STEP 221, 249
storing values in parameter buffer 254
STR 242
STR{2} 242
string expressions

creating ~ from numeric expressions 242
format string 243
length of ~ 247
position of ~ in each other 247
splitting ~ 245
substrings 248
width of ~ 247

STRLEN 247
STRSTR 247
STRSUB 248
STW 247
STYLE 191, 211, 259
SUBGROUP 138, 142
subroutines 252, 253
SURFACE 191
surface 140
surface base 140
surface generated by polyline

~ from planar curve and space curve 92
~ sweeping along space curve path 99, 104
~ sweeping space curve path 95

surface of the 3D shape of the object 219

SURFACE3D 219
SWEEP 95
SWEEPGROUP 139, 145
SWEEPGROUP (2) 145

T
TAN 240
TEVE 119
TEXT 117
text definition

~ in 2D 159
~ in 3D 117

text style
~ setting 191

TEXT2 159
TEXTURE 200
texture definition 200
THEN 252
TO 249
TOLER 190, 259
transformations

deleting ~ 31
TUBE 99
tube definition

~ starting from another tube 72
~ starting from ellipsoid 73
bending ~ 75

TUBEA 104

U
UI_BUTTON 224
UI_DIALOG 223
UI_GROUPBOX 225
UI_INFIELD 227
UI_OUTFIELD 227
UI_PAGE 223
UI_SEPARATOR 225, 226
UI_STYLE 226
UNTIL 251
USE 255
user global variables 25
User Interface script 13

V
value assignment 187
value lists 21, 25
VALUES 221
VARDIM1 236
VARDIM2 236
variable 26
variables 24
VARTYPE 261
VECT 119
vectorial hatch 204
vectors 118

~ definition 119
VERT 119
vertices 118
volume of the 3D shape of the object 219

W
WA 354
wall definition

curved ~ 56
extended ~ 59

Wall End 267
WALLARC2 316
WALLBLOCK2 315
WALLHOLE 305
WALLHOLE2 314
WALLLINE2 316
WALLNICHE 309
WHILE 250
WIRE 191
wireframe 140
wireframe base 140
wireframe modeling mode 191
WO 354
writing out arguments 260

X
XFORM 30
XWALL_ 59
XWALL_{2} 62

	GDL Reference Guide
	Contents

	GDL Reference Guide
	General Overview
	Starting Out
	Scripting
	Library Part Structure
	Analyze, Deconstruct and Simplify
	Elaboration
	Entry Level
	Intermediate Level
	Advanced Level
	Expert Level

	3D Generation
	The 3D Space
	Coordinate Transformations
	The GDL Interpreter
	The GDL Script Analysis

	GDL Syntax
	Statements
	Line
	Label
	Characters
	Strings
	Identifiers
	Variables
	Parameters
	Simple Types
	Derived Types

	Coordinate Transformations
	2D Transformations
	3D Transformations
	Managing the Transformation Stack

	3D Shapes
	Basic Shapes
	BLOCK
	BRICK
	CYLIND
	SPHERE
	ELLIPS
	CONE
	PRISM
	PRISM_
	CPRISM_
	CPRISM_{2}
	BPRISM_
	FPRISM_
	HPRISM_
	SPRISM_
	SPRISM_{2}
	SLAB
	SLAB_
	CSLAB_
	CWALL_
	BWALL_
	XWALL_
	XWALL_{2}
	BEAM
	CROOF_
	CROOF_{2}
	MESH
	ARMC
	ARME
	ELBOW

	Planar Shapes in 3D
	HOTSPOT
	LIN_
	RECT
	POLY
	POLY_
	PLANE
	PLANE_
	CIRCLE
	ARC

	Shapes Generated from Polylines
	EXTRUDE
	PYRAMID
	REVOLVE
	RULED
	RULED{2}
	SWEEP
	TUBE
	TUBEA
	COONS
	MASS

	Elements for Visualization
	LIGHT
	PICTURE

	3D Text Elements
	TEXT
	RICHTEXT

	Primitive Elements
	VERT
	TEVE
	VECT
	EDGE
	PGON
	PIPG
	COOR
	BODY
	BASE

	Cutting in 3D
	CUTPLANE
	CUTPOLY
	CUTPOLYA
	CUTSHAPE
	CUTFORM

	Solid Geometry Commands
	GROUP
	ENDGROUP
	ADDGROUP
	SUBGROUP
	ISECTGROUP
	ISECTLINES
	PLACEGROUP
	KILLGROUP
	SWEEPGROUP

	Binary 3D

	2D Shapes
	Drawing Elements
	HOTSPOT2
	LINE2
	RECT2
	POLY2
	POLY2_
	POLY2_A
	POLY2_B
	POLY2_B{2}
	POLY2_B{3}
	POLY2_B{4}
	POLY2_B{5}
	ARC2
	CIRCLE2
	SPLINE2
	SPLINE2A
	PICTURE2
	PICTURE2{2}

	Text Element
	TEXT2
	RICHTEXT2

	Binary 2D
	FRAGMENT2
	FRAGMENT2

	3D Projections in 2D
	PROJECT2
	PROJECT2{2}
	PROJECT2{3}

	Drawings in the List
	DRAWING2
	DRAWING3
	DRAWING3{2}
	DRAWING3{3}

	Graphical Editing
	Hotspot-based Editing Commands
	HOTSPOT
	HOTLINE2
	HOTARC2
	HOTLINE
	HOTARC

	Status Codes
	Status Code Syntax
	Additional Status Codes
	Previous part of the polyline: current position and tangent is defined
	Segment by absolute endpoint
	Segment by relative endpoint
	Segment by length and direction
	Tangential segment by length
	Set start point
	Close polyline
	Set tangent
	Set centerpoint
	Tangential arc to endpoint
	Tangential arc by radius and angle
	Arc using centerpoint and point on the final radius
	Arc using centerpoint and angle
	Full circle using centerpoint and radius

	Attributes
	Directives
	Directives for 3D and 2D Scripts
	[LET]
	RADIUS
	RESOL
	TOLER
	PEN
	LINE_PROPERTY
	[SET] STYLE
	SET STYLE 0

	Directives Used in 3D Scripts Only
	MODEL
	[SET] MATERIAL
	SECT_FILL
	SHADOW

	Directives Used in 2D Scripts Only
	DRAWINDEX
	[SET] FILL
	[SET] LINE_TYPE

	Inline Attribute Definition
	Materials
	DEFINE MATERIAL
	DEFINE MATERIAL BASED_ON
	DEFINE TEXTURE

	Fills
	DEFINE FILL
	DEFINE FILLA
	DEFINE SYMBOL_FILL
	DEFINE SOLID_FILL
	DEFINE EMPTY_FILL
	DEFINE LINEAR_GRADIENT_FILL
	DEFINE RADIAL_GRADIENT_FILL
	DEFINE TRANSLUCENT_FILL
	DEFINE IMAGE_FILL

	Line Types
	DEFINE LINE_TYPE
	DEFINE SYMBOL_LINE

	Styles
	DEFINE STYLE
	DEFINE STYLE {2}

	Paragraph
	Textblock
	Additional Data
	External file dependence

	Non-Geometric Scripts
	The Properties Script
	DATABASE_SET
	DESCRIPTOR
	REF DESCRIPTOR
	COMPONENT
	REF COMPONENT
	BINARYPROP
	SURFACE3D ()
	VOLUME3D ()
	POSITION
	DRAWING

	The Parameter Script
	VALUES
	PARAMETERS
	LOCK
	HIDEPARAMETER

	The User Interface Script
	UI_DIALOG
	UI_PAGE
	UI_CURRENT_PAGE
	UI_BUTTON
	UI_SEPARATOR
	UI_GROUPBOX
	UI_PICT
	UI_STYLE
	UI_OUTFIELD
	UI_INFIELD
	UI_INFIELD{2}
	UI_INFIELD{3}
	UI_RADIOBUTTON
	UI_TOOLTIP

	Expressions and Functions
	Expressions
	DIM
	VARDIM1(expr)
	VARDIM2(expr)

	Operators
	Arithmetical Operators
	Relational Operators
	Boolean Operators

	Functions
	Arithmetical Functions
	ABS
	CEIL
	INT
	FRA
	ROUND_INT
	SGN
	SQR

	Circular Functions
	ACS
	ASN
	ATN
	COS
	SIN
	TAN
	PI

	Transcendental Functions
	EXP
	LGT
	LOG

	Boolean Functions
	NOT

	Statistical Functions
	MIN
	MAX
	RND

	Bit functions
	BITTEST
	BITSET

	Special Functions
	String Functions
	STR
	STR
	STR{2}
	SPLIT
	STW
	STRLEN
	STRSTR
	STRSUB

	Control Statements
	Flow Control Statements
	FOR
	NEXT
	DO
	IF
	GOTO
	GOSUB
	RETURN
	END / EXIT

	Parameter Buffer Manipulation
	Macro Objects
	The Output Statement
	File Operations
	OPEN
	INPUT
	VARTYPE
	OUTPUT
	CLOSE

	USING DETERMINISTIC ADD-ONS
	INITADDONSCOPE
	PREPAREFUNCTION
	CALLFUNCTION
	CLOSEADDONSCOPE

	Miscellaneous
	Global Variables
	General environment information
	Story information
	Fly-through information
	General element parameters
	Object, Lamp, Door, Window parameters
	Object, Lamp parameters
	Object, Lamp, Door, Window parameters, Curtain Wall Accessory - available for listing and labels only
	Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only
	Window, Door and Wall End parameters
	Window, Door parameters - available for listing and labels only
	Lamp parameters - available for listing and labels only
	Label parameters
	Wall parameters - available for Doors/Windows
	Wall parameters - available for listing and labels only
	Column parameters - available for listing and labels only
	Beam parameters - available for listing and labels only
	Slab parameters - available for listing and labels only
	Roof parameters - available for listing and labels only
	Fill parameters - available for listing and labels only
	Mesh parameters - available for listing and labels only
	Curtain Wall parameters - available for listing and labels only
	Curtain Wall Frame parameters - available for listing and labels only
	Curtain Wall Panel parameters - available for listing and labels only
	Curtain Wall Junction parameters - available for listing and labels only
	Curtain Wall Accessory parameters - available for listing and labels only
	Free users’ globals
	Old Global Variables

	Requests
	REQ
	REQUEST
	APPLICATION_QUERY
	LIBRARYGLOBAL

	Doors and Windows
	General Guidelines
	Creation of Door/Window Library Parts
	Rectangular Doors/Windows in Straight Walls
	3D Related Challanges
	2D Related Challanges

	GDL Created from the Floor Plan
	Keywords
	Common Keywords
	Reserved Keywords
	3D Use Only
	2D Use Only
	2D and 3D Use
	Non-Geometric Scripts
	Property Script
	Parameter Script
	Interface Script

	Alphabetical List of Current GDL Keywords
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Parameter Naming Convention

	GDL Data I/O Add-On
	Description of Database
	Opening a Database
	Reading Values from Database
	Writing Values into Database
	Closing Database

	GDL DateTime Add-On
	Opening Channel
	Reading Information
	Closing Channel

	GDL File Manager I/O Add-On
	Specifying Folder
	Getting File/Folder Name
	Finishing Folder Scanning

	GDL Text I/O Add-On
	Opening File
	Reading Values
	Writing Values
	Closing File

	Property GDL Add-On
	OPEN
	CLOSE
	INPUT
	OUTPUT

	GDL XML Extension
	Opening XML Document
	Reading XML Document
	Modifying XML Document

	Polygon Operations Extension
	Opening a channel
	Polygon container management
	Polygon management
	Polygon operation settings
	Polygon operations
	Get resulting polygons
	Closing channel

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

